• Title/Summary/Keyword: ac loss

Search Result 622, Processing Time 0.027 seconds

Angular Dependency of Magnetization Losses in Continuously Transposed Coated Conductors for Large Current Applications (대전류용 초전도 연속전위도체의 외부자장 인가방향에 따른 자화손실 특성)

  • Han, B.W.;Kim, W.S.;Lee, J.K.;Lee, S.Y.;Park, S.H.;Kim, Y.I.;Choi, K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • AC loss is main issue for power applications using YBCO coated conductor. The striated YBCO CC(Coated Conductor) has been proposed by several researchers to decrease a magnetization loss. A continuously transposed coated conductor (CTCC), suggested by our research group before, could be very useful for lower magnetization loss of large current power applications. In this paper, an AC loss reduction effect by the stack, striation and transposition of YBCO CCs under a time varying external magnetic field. To estimate the reduction effects for perpendicular magnetization loss, several CTCC samples were prepared and tested. Also, we measured angular dependency of magnetization losses of various CTCC samples.

AC loss dependency on the arrangement of the HTS wires in the current limiting module for SFCL (초전도 한류모듈 내 고온초전도 선재 배치에 따른 교류손실 변화)

  • Kim, W.S.;Yang, S.E.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.9-12
    • /
    • 2012
  • Usually, the AC loss from the superconducting element of an SFCL due to the load current is very small because it is composed of the combination of bifilar windings with very small reactance. Although the AC loss is small enough, we should be albe to predict for the design and control of the cryogenic system. In fact, an SFCL for the transmission voltage class may not generate ignorable AC loss because of the inevitable space between the HTS wires for the high voltage insulation and cryogenic efficiency. To measure the AC loss dependency on the space between the 2G HTS wires with the width of 4.4 mm, we prepared an experimental setup which could adjust the distance between the wires. We used two 500-mm length HTS wires in parallel and applied the current in the opposite direction for each wire to simulate a part of a current limiting module for a high voltage SFCL. We also put two couples of voltage taps at the ends of each wire and a cancel coil in the voltage measurement circuit to compensate the reactive component from the voltage taps. In this condition, we varied the distance between the wires to investigate the change of the transport current loss. A similar experimental study with HTS wire with the width of 12 mm is now in progress.

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.

Optimal Design of Notch Filter in Photovoltaic Inverter (태양광 인버터의 노치 필터 최적 설계)

  • Kim, Yong-Rae;Heo, Cheol-Young;Lee, Young-Kwoun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.81-92
    • /
    • 2019
  • When Photovoltaic inverter is connected to grid and used as PVPCS (Photovoltaic Power Conditioning System), 120 Hz AC ripple occurs at the dc-link capacitor voltage. This AC ripple reduces the efficiency of PVPCS and shortens the lifetime of the capacitor. In this paper, we design a notch filter to remove AC ripple. As a result, the AC voltage ripple was removed from the dc link and the THD of the PVPCS output current with the notch filter was lowered. This notch filter is determined by the damping coefficient, the bandwidth coefficient, and the switching frequency. Among these, the switching frequency determines the switching loss and the size of the LC filter, and the PVPCS with the high switching frequency has a greater efficiency loss due to the switching loss than the efficiency improvement by the notch filter. Therefore, it is important to set the optimum switching frequency in the PVPCS with the notch filter applied. In this paper, THD and switching loss of PVPCS output current with notch filter are calculated through simulation, and cost function to calculate optimum switching frequency through data is proposed.

Calculation of AC Losses by Perpendicular Magnetic Field (수직방향 자장에 의한 교류손실 계산)

  • 이승욱;심정욱;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.172-175
    • /
    • 2001
  • AC loss which is generated in an HTS wire varies with the direction of the external magnetic field. This paper calculates the AC loss in an HTS tape, where effects of the perpendicular direction of the magnetic field are considered. Brandt equation is used to calculate the loss by perpendicular magnetic field. In the calculation, current densities are varied along the variation of the magnitude of the external magnetic field. Results of calculation are compared with those of the conventional method.

  • PDF

Effect of the voltage lead configurations on AC Loss Measurement in a Single Layer High-Tc Superconducting Model Cable (전압리드의 배치가 단층 고온초전도 모델케이블의 교류손실 측정에 미치는 영향)

  • 류경우;정재훈;황시돌;김석환
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.670-675
    • /
    • 2002
  • AC loss is an important issue in the design of high-T$_{c}$ superconducting Power cables. The cables consists of a number of Bi-2223 tapes wound on a former. In such cables tapes have different critical current characteristics intrinsically. And they are electrically connected to each other and current leads by soldering. These make loss measurements considerably complex, especially for short samples of laboratory size. Special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work the at losses in a single layer model cable have been experimentally investigated for different contacts and arrangements of voltage leads. The results show that the losses are not dependent on both arrangements and contact positions of the voltage leads. This implies that loss flux is only in a cylindrical conductor section. The measured losses also agree well with those based on a monoblock model and are independent of frequencies. This means that the measured AC loss of the model cable is purely hysteretic in nature.e.

Analysis of Coupling Loss with Size and Material in the KSTAR PF Superconducting Coils (KSTAR PF 초전도자석의 크기 및 재료에 따른 결합손실 특성 분석)

  • Lee, H.J.;Chu, Y.;Lee, S.;Park, Y.M.;Park, H.T.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is important to predict AC loss in $Nb_3Sn$ and NbTi cable-in-conduit-conductor (CICC) reliably for the design and operation of large superconducting coils. The hysteresis loss in the superconducting filaments and coupling loss within strands and among strands in a cable or composite are dominant ac losses in superconducting magnets. The coupling loss in a superconductor can be characterized by identifying the coupling constant time $n{\tau}$. To reduce the coupling loss, all the strands (superconductor and Cu) in KSTAR (Korea Superconducting Tokamak Advance Research) are chromium plated with thickness of $l{\pm}0.5{\mu}m$. The ac losses of PF1, PF5 and PF6 coils has been measured by calorimetric method while applying trapezoidal current pulses with various ramp rate from 0.5 kA/s to 2 kA/s. The coupling time constants for $Nb_3Sn$ coils are $25{\sim}55$ ms and the values are not co-related with the coil size, the time constants for NbTi coil is 30 ms.

AC loss analysis and experimental evaluation of a high temperature superconductor (고온초전도선재의 교류손실 해석 및 실험)

  • Ryu, Kyung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.96-100
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current and exposed to an external magnetic field generated by neighboring tape's AC currents simultaneously. AC loss taking into account such real applications is a crucial issue for power applications of the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1.5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured transport losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents. The transport losses do not depend on the frequency of the neighboring tape's AC currents but its arrangements in the range of small current especially.

  • PDF

Loss Analysis according to Configuration Method of AC Module Integrated Converter for Photovoltaic System (태양광 발전 시스템용 AC 모듈 집적형 전력변환기의 구성 방식에 따른 손실 분석)

  • Kang, Seung-Hyun;Son, Won-Jin;Ann, Sangjoon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.311-318
    • /
    • 2020
  • A photovoltaic (PV) system uses an AC module integrated converter (MIC) to operate PV cells at a maximum power point (MPP) and for high efficiency. The MPP of a PV cell varies depending on partial shading conditions, and loss occurs differently according to the configuration method of the PV-MIC. Therefore, this study compares the losses of passive components and power semiconductors according to the partial shading conditions of the PV module. Theoretical loss analysis is performed using parameters for the datasheet and PSIM simulation results. Analysis results verify that the one-stage PV-MIC demonstrates high efficiency.

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.