• Title/Summary/Keyword: abutment-implant connection

Search Result 132, Processing Time 0.025 seconds

Surface Changes between Implant and Zircoina Abutment after Loading (하중 후 임프란트와 지르코니아 지대주 사이의 표면 변화)

  • Kim, Moon-Soo;Cho, Young-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • In this study, titanium abutments and zirconia abutments were connected to each implant in external type implants. After that they were loaded 10000 times with 20Kg as occlusal force. The surface changes of external hexgon part and platform were observed in FESEM image. Viker's hardness of an implant, a titanium abutment and a zirconia abutment were measured respectively. 1. Viker's hardness of an implants, a titanium abutment and a zirconia abutment was $309.80{\pm}11.78$ HV, $318.40{\pm}11.82$ HV, and $1495.30{\pm}16.21$ HV respectively. There was no statistical significance between an implant and a titanium abutment (P>0.05, Anova). However, there was statistical significance between an implant and a zirconia abutment(P<0.05, Anova). 2. The wear was observed at the joint of implant and abutment in both a titanium abutment group and a zirconia abutment group after loading 10,000 times. The zirconia abutment showed more remarkable wear than the titanium one. In conclusion, the wear of external hexagon and platform was much more notable in a zirconia abutment group than a titanium one. It was suggested that it could result from the difference of surface hardness between titanium and zirconia. The wear of junction between an implant and a zirconia abutment becomes more severe, the connection of an implant and an abutment is much more unfit. This is likely to cause loosening and fracture of the abutment screw. so it is considered that the possibility of implant supra-structure failure can be increased.

The influence of the implant-abutment complex on marginal bone and peri-implant conditions: A retrospective study

  • Tokgoz, Selen Ergin;Bilhan, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • Purpose. The design of the implant-abutment complex is thought to be responsible for marginal bone loss (MBL) and might affect the condition of the peri-implant tissues. This the present study aimed to evaluate the influence of the implant-abutment complex on MBL and the peri-implant tissues in partially edentulous patients treated with dental implants and determine the most advantageous design. Materials and Methods. A total of ninety-one endosseous implants with different designs of implant-abutment complex [tissue level-TL (n = 30), platform switch-PS (n = 18), and platform match-PM (n = 43)] were reviewed for MBL, Probing Pocket Depth (PPD) and Bleeding on Probing (BoP). MBL was calculated for first year of the insertion and the following years. Results. The median MBL for the PM implants (2.66 ± 1.67 mm; n = 43) in the first year was significantly higher than those for the other types (P=.033). The lowest rate of MBL (0.61 ± 0.44 mm; n = 18) was observed with PS implants (P=.000). The position of the crown-abutment border showed a statistically significant influence (P=.019) and a negative correlation (r=-0.395) on MBL. BoP was found significantly higher in PM implants (P=.006). The lowest BoP scores were detected in PS implants, but the difference was not significant (P=.523). The relation between PPD and connection type revealed no statistically significant influence (P>.05). Conclusion. Within the limitations of the present study, it may be concluded that PS implants seem to show better peri-implant soft tissue conditions and cause less MBL.

Comparison of implant component fractures in external and internal type: A 12-year retrospective study

  • Yi, Yuseung;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Shin-Jae;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • PURPOSE. The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. MATERIALS AND METHODS. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. RESULTS. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). CONCLUSION. In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

Immediate Connection of Customized Zirconia Abutment Using Flapless Guided Surgery: A Clinical Report (무절개 수술을 이용한 맞춤형 지르코니아 지대주의 즉시 장착 증례)

  • Lee, Gyeong-Je;Choi, Byung-Ho;Kim, Hee-Jun;Jung, Seng-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.201-212
    • /
    • 2012
  • There are some similar aspects at histological and morphological characteristics between the peri-implant tissue and periodontal tissue and the direct attachment between the titanium and soft tissue around the implant called as "Functional ankylosis" can prevent the apical infiltration of inflammatory and bone resorption around implant. But, the repeated connection and disconnection of the abutment can destroy the mucosal barrier of soft tissue around the implant and can cause the marginal bone resorption. The amount of marginal bone resorption may reduced if the prosthetic abutment is placed at that time of surgery. Connection of the prosthetic abutment at surgery was limited because the low accuracy of conventional method, but by using of Cone Beam Computed Tomography(CBCT) and guide surgery, the 3-dimensional accuracy of implant placement became much higher than before and it became possible. This is a clinical case of immediate connection of prosthetic abutment and provisional restoration by using of precise CBCT diagnosis and pre-fabricated zirconia customized abutment at surgery and the alternative method is described in this article because of the clinically contentable results.

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

THE EFFECT OF ABUTMENT HEIGHT ON SCREW LOOSENING IN SINGLE IMPLANT-SUPPORTED PROSTHESES AFTER DYNAMIC CYCLIC LOADING

  • Kim Nam-Gun;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.664-670
    • /
    • 2004
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection. Purpose. The purpose of this study was to examine the changes of detorque values of abutment screws with external connection in different abutment heights. Materials and methods. After cyclic loading on three different abutment heights, detorque values were measured. Abutments were retained with titanium abutment screws tightened to 30 Ncm (30.5 kgmm) with digital torque gauge as recommended by the manufacturer. Replacing abutments, implants and titanium abutment screws with new ones at every measurement, initial detorque values were measured six times. In measuring de torque values after cyclic loading, Avana Cemented Abutments of 4.0 mm collar, 7.0 mm height (Osstem Co., Ltd., Seoul, Korea) were used with three different lengths of 5.0, 8.0, 11.0 mm. Shorter abutments were made by milling of 11.0 mm abutment to have the same force-exercised area of 4.5 mm diameter. Sine curve force (20N-320N, 14Hz) was applied, and detorque values were measured after cyclic loading of 2 million times by loading machine. Detorque values of initial and after-loading were measured by digital torque gauge. One-way ANOVA was employed to see if there was any influence from different abutment heights. Results. The results were as follows: 1. The initial detorque value was 27.8$\pm$0.93 kgmm, and the ratio of the initial detorque value to the tightening torque was 0.91(27.8/30.5). 2. Measured detorque values after cyclic loading were declined as the height of the abutment increased, that was, 5.0 mm; 22.3$\pm$0.82 kgmm, 8.0 mm; 21.8$\pm$0.93 kgmm, and 11.0 mm; 21.3$\pm$0.94 kgmm. 3. One-way ANOVA showed no statistically significant differences among these (p>0.05). 4. Noticeable mobility at the implant-abutment interface was not observed in any case after cyclic loading at all.

Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study (내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향)

  • Seol, Hyon-Woo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: To evaluate the axial displacement of implant-abutment assembly after cyclic loading in internal tapered connection system. Materials and methods: External butt-joint connection implant and internal tapered connection implant were connected with three types of abutment for cement-retained prostheses, i.e. external type abutment (Ext group), internal tapered 1-piece abutment (Int-1 group), and internal tapered 2-piece abutment (Int-2 group). For each group, 7 implants and abutments were used. The implantabutments assemblies were clamped into the implant holder for vertical loads. A dynamic cyclic loading was applied for $150{\pm}10N$ at a frequency of 4 Hz. The amount of axial displacement of the abutment into the implant was calculated at each cycle of 0, 5, 10, 50, 100, 1,000, 5,000, and 10,000. A repeated measures analysis of variance (ANOVA) for the overall effect of cyclic loading and the pattern analysis by linear mixed model were used for statistical analysis. Differences at P<.05 were considered statistically significant. Results: The mean axial displacement after 10,000 cycles were $0.714{\pm}0.488{\mu}m$ in Ext group, $5.286{\pm}1.604{\mu}m$ in Int-1 group, and $11.429{\pm}1.902{\mu}m$ in Int-2 group. In the pattern analysis, Int-1 and Int-2 group showed continuous axial displacement at 10,000 cycles. There was no declining pattern of axial displacement in the Ext group. Conclusion: The pattern of linear mixed model in Ext group showed no axial displacement. There were continuous axial displacements in abutment-implant assemblies in the Int-1 and Int-2 group at 10,000 cycles. More axial displacement was found in Int-2 group than in Int-1 group.

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

Splinted and non-splinted implant-supported restorations : prosthetic considerations for restoring multiple adjacent teeth (Splinted or Non-splinted: 다수의 인접한 치아 결손부 수복을 위한 임플란트 보철)

  • Yoon, Hyung-In
    • The Journal of the Korean dental association
    • /
    • v.54 no.3
    • /
    • pp.198-205
    • /
    • 2016
  • The purpose of this paper was to investigate the significance of splinted and non-splinted implant-supported restorations with an internal connection for multiple consecutively missing teeth. Upon examination of the effects of fixture-abutment connection, the distribution of occlusal load was favorable in splinted implant-prosthesis with an external connection, but effect of strain distribution was not significant in splinted implant-prosthesis with an internal connection. In splinted implant-prostheses for short implants, strain distribution was not affected by the method of retention. For cement-retained prostheses, the effect of strain distribution due to splinting was not significant. In clinical studies, non-splinted prostheses with an internal connection for multiple consecutively missing teeth showed high survival rate, mild marginal bone loss, and stable periodontal condition. However, failure to achieve optimal proximal contact between single-unit prostheses may lead to food impaction, and veneer fracture may be inevitable when the framework provides inadequate support in the proximal region. In conclusion, splinted implant-prosthesis is not an indication in all cases, and clinical consideration of its use should be based on the patient's oral condition, such as location and number of implants, formation of proximal contact, canine guidance, existence of parafunctional habit, and oral hygiene, when multiple consecutively missing teeth are replaced by internal connection type implant.

  • PDF

Energy-dispersive X-ray spectroscopic investigation of a fractured non-submerged dental implant associated with abutment fracture

  • Truc Thi Hoang Nguyen;Mi Young Eo;Kezia Rachellea Mustakim;Mi Hyun Seo;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The biocompatibility and durability of implant fixtures are major concerns for dentists and patients. Mechanical complications of the implant include abutment screw loosening, screw fracture, loss of implant prostheses, and implant fracture. This case report aims to describe management of a case of fixture damage that occurred after screw fracture in a tissue level, internal connection implant and microscopic evaluation of the fractured fixture. A trephine bur was used to remove the fixture, and the socket was grafted using allogeneic bone material. The failed implant was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), which revealed a fractured fixture with both normal and irregular bone patterns. The SEM and EDS results give an enlightenment of the failed fixture surface micromorphology with microfracture and contaminated chemical compositions. Noticeably, the significantly high level of gold (Au) on the implant surface and the trace amounts of Au and titanium (Ti) in the bone tissue were recorded, which might have resulted from instability and micro-movement of the implant-abutment connection over an extended period of time. Further study with larger number of patient and different types of implants is needed for further conclusion.