• 제목/요약/키워드: abutment length

검색결과 108건 처리시간 0.025초

순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토 (A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment)

  • 신근식;한희수
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.594-601
    • /
    • 2019
  • 순수형 보강토교대는 상부구조의 하중을 보강토체 상단에 직접기초 형식으로 지지하는 교대이다. 교대 자체의 변형을 최소화하기 위해 비신장성 보강재인 메탈스트립을 사용하여야 한다. 순수형 보강토교대의 적용조건 도출을 위한 매개변수해석은 Zevogolis(2007)에 의해 수행되었다. 그 결과, 최상단 보강재의 인발 안전율이 가장 작게 산정되는 것으로 나타났다. 따라서 최상단 보강재의 인발 안전율이 가장 중요한 설계인자로 판단된다. 본 연구에서는 교대의 형상에 따른 최상단 보강재의 인발 안전율 변화를 검토하였다. 교대 길이와 교대 뒷굽 길이, 교대 높이를 변수로 하여 매개변수해석을 수행하였다. 매개변수해석 결과, 교대 길이와 교대 뒷굽 길이가 증가함에 따라 인발 안전율이 증가하는 것으로 나타났다. 이는 교대 길이가 증가함에 따라 교대의 접지면적이 증가하게 되었으며, 그로 인해 상부구조의 하중이 분산되었기 때문이다. 교대 길이 1.2m에서와 교대 뒷굽 길이 0.9m 지점에서 인발 안전율이 수렴하는 것으로 나타났다. 이는 접지면적 증가에 따라 보강재의 유효길이가 감소하였기 때문이다. 그러나, 교대 길이와 교대 뒷굽 길이가 과도하게 증가될 경우 상부구조의 연장이 증가하게 된다. 그리고 교대 높이가 과도하게 증가할 경우 교대 뒤채움부 토공량이 증가하게 된다. 이는 보강토옹벽에 상부하중으로 작용하게 된다. 따라서 이에 대한 면밀한 검토가 필요하다고 판단된다.

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권6호
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.

Sinking and fit of abutment of locking taper implant system

  • Moon, Seung-Jin;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.97-101
    • /
    • 2009
  • STATEMENT OF PROBLEM. Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE. In this study, Bicon$^{(R)}$ Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS. 10 Bicon$^{(R)}$ implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS. It was evident, that the amount of abutment sinking in Bicon$^{(R)}$ Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at $0.45{\pm}0.09\;mm$. CONCLUSION. Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location.

치과용 임플랜트에서 지대주 나사의 길이 및 반복 조임 횟수가 지대주 나사의 풀림에 미치는 영향 (THE INFLUENCE OF ABUTMENT SCREW LENGTH AND REPEATED TIGHTENING ON SCREW LOOSENING IN DENIAL IMPLANT)

  • 최진호;양재호;조원표;이재봉
    • 대한치과보철학회지
    • /
    • 제44권4호
    • /
    • pp.432-442
    • /
    • 2006
  • Statement of problem: One of common problems associated with dental implant is the loosening of abutment screws that retain the implants. Purpose : This study was performed to investigate the influence of abutment screw length and repeated tightening on screw loosening in dental implant. Material and method: Forty nine Hexplants (13mm length, 4.3mm diameter, Ti grade IV, Warantec. Co. Ltd. Seongnam, Korea) and cementation type abutments(straight abutment) and abutment screws (0.4mm/pitch) were divided into 7 groups, depending on abutment screw length. Each implant and abutment was tightened to 30Ncm by torque controller(MGT50, MARK-10 Inc., USA) and the removal torque values were measured during 10 consecutive closure/opening trials. Results and Conclusion: The results of comparing the removal torque value are as follows : 1. There is no significant difference in the removal torque value between groups in 10 consecutive closure/opening trials (p = 0.97). 2. If the fractured abutment screw is engaged in longer than 2.425 thread length, there is no significant difference in the preload between the fractured abutment screw and the new abutment screw when both are equally tightened to 30 Ncm. 3. The removal torque value in the 1st trial(24.510 Ncm) was lower than that in the 2nd, 3rd, 4th, 5th, 6th, 7th trials and the removal torque value in the 2nd trials(25.551 Ncm) was maximum and was decreased in 1311owing trials. The removal torque value in the 1st trial was significantly lower than that in the 2nd, 3rd, 4th trials and was significantly higher than that in the 8th, 9th, l0th trials(p<0.05). 4. In the 2nd, 3rd, 4th, 5th, 6th, 7th trials, the abutment screw was mainly influenced by settling effect and the higher preload was obtained In the 8th, 9th, l0th trials, the abutment screw was mainly influenced by adhesive wear and the progressively lower preload was obtained.

Retrofitting of steel pile-abutment connections of integral bridges using CFRP

  • Mirrezaei, Seyed Saeed;Barghian, Majid;Ghaffarzadeh, Hossein;Farzam, Masood
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.209-226
    • /
    • 2016
  • Integral bridges are typically designed with flexible foundations that include one row of piles. The construction of integral bridges solves difficulties due to the maintenance of expansion joints and bearings during serviceability. It causes integral bridges to become more economic comparing with conventional bridges. Research has been focused not only to enhance the seismic performance of newly designed bridges, but also to develop retrofit strategies for existing ones. The local performance of the pile to abutment connection will have a major effect on the performance of the structure and the embedment length of pile inside the abutment has a key role to provide shear and flexural resistance of pile-abutment connections. In this paper, a simple method was developed to estimate the initial value of embedment length of the pile for retrofitting of specimens. Four specimens of pile-abutment connections were constructed with different embedment lengths of pile inside the abutment to evaluate their performances. The results of the experimentation in conjunction with numerical and analytical studies showed that retrofitting pile-abutment connections with CFRP wraps increased the strength of the connection up to 86%. Also, designed connections with the proposed method had sufficient resistance against lateral load.

프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측 (Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges)

  • 김우석
    • 콘크리트학회논문집
    • /
    • 제23권5호
    • /
    • pp.667-674
    • /
    • 2011
  • 이 연구는 교량의 생애 동안의 온도 변화와 콘크리트의 시간 의존 영향을 고려하여 PSC 거더 일체식 교량의 해석 방법과 교대의 변위를 예측하는 모델 개발에 관한 것이다. 비선형 수치 해석 모델은 지반-구조물의 상호작용을 고려하며, 재료의 비선형 또한 고려되었다. 개발된 수치 해석 모델을 이용하여 총 243가지의 경우에 대하여 변수 연구를 하였다. 고려된 변수는 (1) 열팽창 계수, (2) 교량 길이, (3) 뒤채움재의 높이, (4) 뒤채움재의 강성, 그리고 (5) 말뚝-지반 강성이다. 변수 연구의 결과는 열팽창 계수, 교량 길이, 말뚝-지반의 강성이 지배적인 영향을 나타내는 것으로 드러났다. 또한, 교량의 길이는 교대의 윗부분의 변위에 지배적인 영향을 미치며 자유팽창 수축과 유사하였다. 하부의 변위에는 다른 변수들의 영향으로 추정이 쉽지 않았다. 개발된 교대의 변위 추정 모델은 기본 설계시에 사용될 수 있을 것이다.

고정성 가공의치에서 이차 지대치에 발생하는 응력의 삼차원 유한요소법적 분석 (A STUDY OF THE STRESS DISTRIBUTION ON THE SECOND ABUTMENT AND SUPPORTING TISSUES IN FIXED PARTIAL DENTURE USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS METHOD)

  • 김정희;조광헌;이청희
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.675-694
    • /
    • 2000
  • The purpose of this study was to investigate the displacement of and the stress distribution on the prosthesis, abutment, and its supporting tissues under functional load, and the effect of alteration in root length of 2nd abutment. The 3-dimensional finite element method was used and the finite element models were prepared in which the abutments of left mandibular 5 unit axed partial denture were canine, the 1st pre-molar and the 2nd molar, and the root lengths of canines were as follows. Model I : Root length of canine was 2mm longer than the 1st premolar Model II : Root length of canine was 2mm shorter than the 1st premolar Static compressive force of 300N was applied to connector between 2nd premolar & 1st molar, and then von Mises stress, displacement and reaction force were obtained. The results were as follows : 1. In fixed partial denture, prosthesis under load on pontic was rotated around mesio-distal long axis of it from longual side to buccal, and simultaneously bended in buccal and gingival direction with mesial end deformed in gingival direction and distolingual end in occlusal. 2. Clinical crowns of abutments were bended in the same directions with those in which prosthesis deforms. Due to that, roots of anterior abutments were twisted in counterclockwise with concentration of shear stress on distal or distobuccal sides of their cervices, and that of posterior was in clockwise with concentration of shear stress on mesiobuccal side of it in the same level with anterior abutments. 3. In case that root length of the 2nd abutment was longer than that of the 1st abutment, its displacement and reaction force which means the force tooth exerts on the surrounding periodontal tissues were smaller but shear stress on itself was larger than in the case root length of 2nd abutment was shorter.

  • PDF

Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

  • Jo, Jae-Young;Yang, Dong-Seok;Huh, Jung-Bo;Heo, Jae-Chan;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.491-497
    • /
    • 2014
  • PURPOSE. This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION. The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

하중조건에 따른 원추형 내측연결 임플랜트 시스템에서 지대주 침하 및 적합에 관한 연구 (Abutment Sinking and Fitness of Conical Internal Connection Implant System according to Loading Condition)

  • 이한라;김희중;손미경;정재헌
    • 구강회복응용과학지
    • /
    • 제24권1호
    • /
    • pp.77-89
    • /
    • 2008
  • 이 연구의 목적은 원추형 내측 연결 임플랜트 시스템에서 하중조건에 따른 지대주의 침하 및 적합도를 평가하는 것이다. 본 연구에서는 내부 원추형 연결방식의 Alloden implant system (Nei Corp. Korea)의 고정체와 2종류(conventional, FDI)의 지대주를 사용하였다. 임상에서 Alloden 임플랜트는 지대주와 고정체 연결시 처음에 손으로 지긋이 눌러 고정시킨 후 mallet을 이용하여 약 3회정도 타격을 가하여 고정한다. 이때 타격시의 정확한 힘을 측정하여 각 실험군에 적용시켰다. 적용 횟수는 손가락으로 누르는 힘을 1회, mallet으로 타격하는 힘을 3회, 저작력으로 가정한 20kg의 힘을 지대주의 침하가 생기지 않을때까지 각각의 표본에 적용하였다. 그 후 각 단계에 대한 지대주의 침하량을 Vernier caliper를 이용하여 측정하였다. 임플랜트는 불포화 폴리에스터(Epovia, Cray Valley Inc. Korea)에 매몰하여 중합시켰고 모든 표본을 절삭한 후 연마하여 주사전자현미경을 통하여 분석, 평가하였다.