• Title/Summary/Keyword: absorbed dose

Search Result 569, Processing Time 0.028 seconds

A Change in an Absorbed Dose of the Heart in General and Respiratory Control Radiation Treatment Plans (일반 및 호흡조절 방사선치료계획에서 심장의 흡수선량 변화)

  • Yang, Eun-Ju;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2018
  • In radiation treatment, it is unavoidable to block the influence of scattered ray on a skin and prevent internal normal organs from being exposed to radiation. It is fair to say that radiation therapy aims to reduce an absorbed dose of normal tissues. In particular, in radiation therapy of left-sided breast cancer, the internal neighboring organs are normal breast tissues, the heart, and the lung. The side effects on the heart include cardioplegy and myocardial infarction. This study tried to observe changes in the volume and dose of the heart in general radiation therapy plan and respiratory control based radiation therapy plan for patients with left-sided breast cancer, and to find the heart's volume and dose generated by respiration. According to the 4D computer tomography (CT), a volume of the heart had $12.8{\pm}8.7cc$ on average, and its dose had $17.3{\pm}12.1cGy$ on average. The differences in the volume and dose may cause side effects in radiation treatment. Therefore, it is necessary to apply respiratory control technique to establish the radiation treatment plan based on an accurate position of the heart.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • 지영훈;이동한;류성렬;권수일;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.45-57
    • /
    • 1997
  • It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine, European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induces the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. For measuring the absorbed doses and the dose distribution of fast neutron beam, we used IC-17 and IC-18 ion chambers manufactured by A-150 plastic(tissue-equivalent material), IC-17M ion chamber manufactured by magnesium, TE gas and Ar gas, and RDM 2A electrometer. The magnitude of gamma-contamination intermingled with fast neutron beam was about 13% at 5cm depth of standard irradiated field, and increased as the depth was increased. At the central axis the maximum dose depth and 50% dose depth were 1.32cm and 14.8cm, respectively. The surface dose rate was 41.6-54.1% throughout the entire irradiated fields and increased as the irradiated fields were increased. Beam profile was that the horn effect of about 7.5% appeared at 2.5cm depth and the flattest at 10cm depth.

  • PDF

Dosimetric characteristics of an independent collimator system using measurements performed quarter fields. (Tungsten eyeball shield block의 임상적용에 관한 고찰)

  • Jeong, Deok-Yang;Lee, Byoung-Koo;Hwang, Woong-Koo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • During radiation therapy with electron beam to eyelid, we must keep the minimal dose on eyeball as possible. especially in the treatment of Sebaceous gland carcinoma, Squamouse cell ca., and basal cell ca. of eyelid and low grade MALToma etc. But if radiation field covered the upper & lower eyelid, it makes a cataract on lens of treated eye, in late complications. Now we reports the advantages of Tungsten eyeball shielding block compare to previously used lead block. with BOLX-I material, we made a eyeball model and measured the absorbed dose of 6MeV & 9MeV electron hem at 6 point of eyeball model with TLD chip. And compare the absorbed dose to previously lead block and other types of Tungsten eyeball shielding block.

  • PDF

Neutron Generation from a 24 MV Medical Linac (24 MV 의료용 선형가속기의 중성자 발생에 관한 연구)

  • Jeong Dong Hyeok;Kang Jeong Ku;Lee Jeong Ok
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • The energy spectra and dose calculations were performed for secondary neutrons from a 24 MV LINAC using MCNPX code (V2, 4, 0). The energy spectra for neutrons and photons emitted from the LINAC head, and absorbed dose to water were calculated in water phantom. The absorbed doses calculated with Monte Carlo were $0.66\~0.35$ mGy/photon Gy at the surface to d=5 cm, and calculated with interaction data was 0.52 mGy/photon Gy at the depth of electron equilibrium in water. We have shown that this work can be applied to dose estimation of neutrons from high energy LINAC through the comparison of our results with other results.

  • PDF

Radiation exposure to the eyes and thyroid during C-arm fluoroscopy-guided cervical epidural injections is far below the safety limit

  • Choi, Eun Joo;Go, Gwangcheol;Han, Woong Ki;Lee, Pyung-Bok
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2020
  • Background: The aim of this study was to evaluate radiation exposure to the eye and thyroid in pain physicians during the fluoroscopy-guided cervical epidural block (CEB). Methods: Two pain physicians (a fellow and a professor) who regularly performed C-arm fluoroscopy-guided CEBs were included. Seven dosimeters were used to measure radiation exposure, five of which were placed on the physician (forehead, inside and outside of the thyroid protector, and inside and outside of the lead apron) and two were used as controls. Patient age, sex, height, and weight were noted, as were radiation exposure time, absorbed radiation dose, and distance from the X-ray field center to the physician. Results: One hundred CEB procedures using C-arm fluoroscopy were performed on comparable patients. Only the distance from the X-ray field center to the physician was significantly different between the two physicians (fellow: 37.5 ± 2.1 cm, professor: 41.2 ± 3.6 cm, P = 0.03). The use of lead-based protection effectively decreased the absorbed radiation dose by up to 35%. Conclusions: Although there was no difference in radiation exposure between the professor and the fellow, there was a difference in the distance from the X-ray field during the CEBs. Further, radiation exposure can be minimized if proper protection (thyroid protector, leaded apron, and eyewear) is used, even if the distance between the X-ray beam and the pain physician is small. Damage from frequent, low-dose radiation exposure is not yet fully understood. Therefore, safety measures, including lead-based protection, should always be enforced.

Evaluation of Radiological Effects on the Aptamers to Remove Ionic Radionuclides in the Liquid Radioactive Waste

  • Minhye Lee;Gilyong Cha;Dongki Kim;Miyong Yun;Daehyuk Jang;Sunyoung Lee;Song Hyun Kim;Hyuncheol Kim;Soonyoung Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Background: Aptamers are currently being used in various fields including medical treatments due to their characteristics of selectively binding to specific molecules. Due to their special characteristics, the aptamers are expected to be used to remove radionuclides from a large amount of liquid radioactive waste generated during the decommissioning of nuclear power plants. The radiological effects on the aptamers should be evaluated to ensure their integrity for the application of a radionuclide removal technique. Materials and Methods: In this study, Monte Carlo N-Particle transport code version 6 (MCNP6) and Monte Carlo damage simulation (MCDS) codes were employed to evaluate the radiological effects on the aptamers. MCNP6 was used to evaluate the secondary electron spectrum and the absorbed dose in a medium. MCDS was used to calculate the DNA damage by using the secondary electron spectrum and the absorbed dose. Binding experiments were conducted to indirectly verify the results derived by MCNP6 and MCDS calculations. Results and Discussion: Damage yields of about 5.00×10-4 were calculated for 100 bp aptamer due to the radiation dose of 1 Gy. In experiments with radioactive materials, the results that the removal rate of the radioactive 60Co by the aptamer is the same with the non-radioactive 59Co prove the accuracy of the previous DNA damage calculation. Conclusion: The evaluation results suggest that only very small fraction of significant number of the aptamers will be damaged by the radioactive materials in the liquid radioactive waste.

Development of Radiation Detector with Intensifying Screen (증감지를 이용한 방사선검출기 개발)

  • Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.859-863
    • /
    • 2023
  • In this study, simple and portable radiation detection system using X-ray intensifying screen, optical sensor and micro-controller unit for education was proposed. The system was simply composed of detection unit consisting of an optical sensor and intensifying screen, micro-controller unit, and was designed to be suitable for portable. Radiation was measured using developed detection system and absorbed dose dosimeter with changing tube voltage from 50 to 100 kVp. The tube current and SDD were fixed on 100 mAs and 100 cm, and dose were measured repeated ten times at each tube voltage. The response and linearity of the detection system were confirmed using the measured values. It was confirmed that the comparison measurement results of the detection system and absorbed dose dosimeter showed a high correlation(r : 0.998, p<.001). In this results, the feasibility of the detection system with intensifying screen and micro-controller unit based was confirmed, and we considered that the developed detection system could be applied to portable, compact, low cost system for education.

Detection and Absorbed-Dose Estimation of Electron Beam-Irradiated Dried Vegetable Using ESR Spectroscopy (ESR Spectroscopy에 의한 전자선 조사 건조 채소의 검지와 흡수선량 예측)

  • 권중호;정형욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.4
    • /
    • pp.882-885
    • /
    • 1999
  • Along with the increasing demands for food irradiation technology, proper detection methods for controlling irradiated foods are required. Dried vegetable(chunggyungchae), which is permitted to be irradiated in Korea, was subjected to a detection study by ESR spectroscopy. Pre established threshold value was successfully applicable to the detection of 50 coded unknown samples of dried clean vege tables, both nonirradiated and electron beam irradiated. Three calibration curves obtained from the samples irradiated at 2.5~15 kGy were not practically adopted to estimate actual absorbed doses ranging from 4 to 7 kGy.

  • PDF

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.