• 제목/요약/키워드: abnormality detection system

검색결과 54건 처리시간 0.029초

클라우드 기반 악성 QR Code 탐지 시스템 (Cloud-based malware QR Code detection system)

  • 김대운;조영태;김종민
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1227-1233
    • /
    • 2021
  • QR코드는 간단한 명함이나 URL 등 다양한 형태로 사용되어 왔다. 최근 코로나19 팬데믹의 영향으로 방문 및 출입 기록을 통한 이동 경로를 추적하기 위해 QR코드를 사용하게 되면서 QR코드의 사용량이 급증하였다. 이렇듯 대부분의 사람들이 대중적으로 사용하게 되면서 위협에 항상 노출되어 있다. QR코드의 경우 실행을 하기 전까지 어떠한 행위를 하는지 알 수 없다. 그렇기 때문에 악성URL이 삽입된 QR코드를 아무 의심없이 실행을 하게 되면 보안 위협에 바로 노출되게 된다. 따라서 본 논문에서는 QR코드를 스캔할 때 악성 QR코드인지를 판단한 후 이상이 없을 경우에만 정상적인 접속을 할 수 있는 클라우드 기반 악성 QR코드 탐지 시스템을 제안한다.

적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법 (Anomaly Detection for User Action with Generative Adversarial Networks)

  • 최남웅;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.43-62
    • /
    • 2019
  • 한때, 이상 탐지 분야는 특정 데이터로부터 도출한 기초 통계량을 기반으로 이상 유무를 판단하는 방법이 지배적이었다. 이와 같은 방법론이 가능했던 이유는 과거엔 데이터의 차원이 단순하여 고전적 통계 방법이 효과적으로 작용할 수 있었기 때문이다. 하지만 빅데이터 시대에 접어들며 데이터의 속성이 복잡하게 변화함에 따라 더는 기존의 방식으로 산업 전반에 발생하는 데이터를 정확하게 분석, 예측하기 어렵게 되었다. 따라서 기계 학습 방법을 접목한 SVM, Decision Tree와 같은 모형을 활용하게 되었다. 하지만 지도 학습 기반의 모형은 훈련 데이터의 이상과 정상의 클래스 수가 비슷할 때만 테스트 과정에서 정확한 예측을 할 수 있다는 특수성이 있고 산업에서 생성되는 데이터는 대부분 정답 클래스가 불균형하기에 지도 학습 모형을 적용할 경우, 항상 예측되는 결과의 타당성이 부족하다는 문제점이 있다. 이러한 단점을 극복하고자 현재는 클래스 분포에 영향을 받지 않는 비지도 학습 기반의 모델을 바탕으로 이상 탐지 모형을 구성하여 실제 산업에 적용하기 위해 시행착오를 거치고 있다. 본 연구는 이러한 추세에 발맞춰 적대적 생성 신경망을 활용하여 이상 탐지하는 방법을 제안하고자 한다. 시퀀스 데이터를 학습시키기 위해 적대적 생성 신경망의 구조를 LSTM으로 구성하고 생성자의 LSTM은 2개의 층으로 각각 32차원과 64차원의 은닉유닛으로 구성, 판별자의 LSTM은 64차원의 은닉유닛으로 구성된 1개의 층을 사용하였다. 기존 시퀀스 데이터의 이상 탐지 논문에서는 이상 점수를 도출하는 과정에서 판별자가 실제데이터일 확률의 엔트로피 값을 사용하지만 본 논문에서는 자질 매칭 기법을 활용한 함수로 변경하여 이상 점수를 도출하였다. 또한, 잠재 변수를 최적화하는 과정을 LSTM으로 구성하여 모델 성능을 향상시킬 수 있었다. 변형된 형태의 적대적 생성 모델은 오토인코더의 비해 모든 실험의 경우에서 정밀도가 우세하였고 정확도 측면에서는 대략 7% 정도 높음을 확인할 수 있었다.

치과용 다이아몬드 버의 마멸 특성 (Wear Characteristic of Diamond Burs in Dentistry)

  • 이근상;임영호;권동호;최만용;김교한;최영윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 1996
  • This paper aims at reviewing the Possibility application over normal or abnormal, detection used by AE and the wear characteristics of grinding process. In this study, when diamond bur in dentistry with chosen grinding conditions were tuned at grinding. The variation of grinding resistance and hE signal is detected by the use of AE measuring system. The tests are carried out in accordance with diamond burs and workpiece; arcyl and bovine. According to the experiment results, the following can be expected; AE has the possibility to detect the state normality and abnormality. However, the grinding resistance measuring can find it difficult to detect it. It can be accurately excerpted from AE occurrence pattern in contact start point of diamond bur and bovine, grinding condition and derailment point. It is known that AE$\_$rms/ is well compatible with grinding resistance. According to the increase of the material removal rate, the specific energy of the diamond bur is inclined to decrease and the grinding resistance has a tendency to increase.

  • PDF

시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단 (Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

치과용 다이아몬드 버의 연삭가공 특성 (Grinding Characteristics of Diamond Burs in Dentistry)

  • 이근상;임영호;권동호;최만용;김교한;최영윤
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.66-72
    • /
    • 1997
  • This paper aims at reviewing the possibility application over normal or abnormal, detection used by AE and the wear characteristics of grinding process. In this study, when diamond bur in dentistry with chosen grinding conditions were tuned at grinding. The variation of grinding resistance and AE signal is detected by the use of AE measuring system. The tests are carried out in accordance with diamond burs and workpiece: arcyl and bovine. According to the experiment results, the following can be expected: AE has the possibility to detect the state normality and abnormality. Hpwever, the grinding resistance measuring can find it difficult to detect it. It can be accurately excepted from AE occurrence pattern in contact start point of diamond bur and bovine, grinding condition and derailment point. It is known that AErms is well compatible with grinding resistance. According to the increase of the material removal rate, the specific energy of the diamond bur is inclined to dectease and the grinding resistance has a tendency to increase.

  • PDF

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템 (Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics)

  • 신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.183-189
    • /
    • 2021
  • 구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.

응급실에서 심자도의 역할 (Role of Magnetocardiography in Emergency Room)

  • 권혁찬;김기웅;김진목;이용호;김태은;임현균;박용기;고영국;정남식
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.40-45
    • /
    • 2006
  • In emergency rooms, patients with acute chest pain should be diagnosed as quickly as possible with higher diagnostic accuracy for an appropriate therapy to the patients with acute coronary syndrome or for avoiding unnecessary hospital admissions. At present, electrocardiography(ECG) and biochemical markers are generally used to detect myocardial infarction and coronary angiography is used as a gold standard to reveal the degree of narrowing of coronary artery. Magnetocardiography(MCG) has been proposed as a novel and non-invasive diagnostic tool fur the detection of cardiac electrical abnormality associated with myocardial ischemia. In this study, we examined whether the MCG can be used fur the detection of coronary artery disease(CAD) in patients, who were admitted to the emergency room with acute chest pain. MCG was recorded from 36 patients admitted to the emergency room with suspected acute coronary syndrome. The MCG recordings were obtained using a 64-channel SQUID MCG system in a magnetically shielded room. In result, presence of CAD could be found with a sensitivity of 88.2 % in patients with acute chest pain without 57 elevation in ECG, demonstrating a possible use in the emergency room to screen CAD patients.

  • PDF

합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구 (Anomaly Detections Model of Aviation System by CNN)

  • 임현재;김태림;송종규;김범수
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.

다중모드 주성분분석에 기반한 천연가스 액화플랜트의 성분 분리공정 감시 시스템 개발 (Development of Monitoring System for the LNG plant fractionation process based on Multi-mode Principal Component Analysis)

  • 편하형;이철진;이원보
    • 한국가스학회지
    • /
    • 제23권4호
    • /
    • pp.19-27
    • /
    • 2019
  • 세계 환경규제가 강화되면서 액화천연가스의 사용량이 지속해서 증가하고 있다. 안정적이고 효율적인 액화천연가스 생산을 위해서는 운전 조건을 세분화하여 감시하는 시스템 구축이 필수적이다. 본 연구에서는 천연가스 액화플랜트 성분 분리공정을 해석하여 구축한 동적 모델 데이터를 대상으로 다중 모드 감시시스템 개발 방법을 제안하였다. 먼저 전체 정상 데이터를 주성분분석과 k-평균 군집화 방법론을 사용하여 다중 정상 운전 모델로 구분하였다. 그 다음, 새로운 데이터 값을 k-최근접 알고리즘으로 구축된 다중 정상 모드와 매칭하였다. 마지막으로, 다중 모드 주성분분석 감시 기법을 통해 공정 데이터의 이상 여부를 판별하였다. 제시된 방법론은 45가지 이상경우에 적용하였고, 기본 주성분분석 방법론과 단변수 감시 방법론과의 비교를 통해 속도와 정확도 지표에서 평균 약 5~10%이상 우수함을 입증하였다.