QR코드는 간단한 명함이나 URL 등 다양한 형태로 사용되어 왔다. 최근 코로나19 팬데믹의 영향으로 방문 및 출입 기록을 통한 이동 경로를 추적하기 위해 QR코드를 사용하게 되면서 QR코드의 사용량이 급증하였다. 이렇듯 대부분의 사람들이 대중적으로 사용하게 되면서 위협에 항상 노출되어 있다. QR코드의 경우 실행을 하기 전까지 어떠한 행위를 하는지 알 수 없다. 그렇기 때문에 악성URL이 삽입된 QR코드를 아무 의심없이 실행을 하게 되면 보안 위협에 바로 노출되게 된다. 따라서 본 논문에서는 QR코드를 스캔할 때 악성 QR코드인지를 판단한 후 이상이 없을 경우에만 정상적인 접속을 할 수 있는 클라우드 기반 악성 QR코드 탐지 시스템을 제안한다.
한때, 이상 탐지 분야는 특정 데이터로부터 도출한 기초 통계량을 기반으로 이상 유무를 판단하는 방법이 지배적이었다. 이와 같은 방법론이 가능했던 이유는 과거엔 데이터의 차원이 단순하여 고전적 통계 방법이 효과적으로 작용할 수 있었기 때문이다. 하지만 빅데이터 시대에 접어들며 데이터의 속성이 복잡하게 변화함에 따라 더는 기존의 방식으로 산업 전반에 발생하는 데이터를 정확하게 분석, 예측하기 어렵게 되었다. 따라서 기계 학습 방법을 접목한 SVM, Decision Tree와 같은 모형을 활용하게 되었다. 하지만 지도 학습 기반의 모형은 훈련 데이터의 이상과 정상의 클래스 수가 비슷할 때만 테스트 과정에서 정확한 예측을 할 수 있다는 특수성이 있고 산업에서 생성되는 데이터는 대부분 정답 클래스가 불균형하기에 지도 학습 모형을 적용할 경우, 항상 예측되는 결과의 타당성이 부족하다는 문제점이 있다. 이러한 단점을 극복하고자 현재는 클래스 분포에 영향을 받지 않는 비지도 학습 기반의 모델을 바탕으로 이상 탐지 모형을 구성하여 실제 산업에 적용하기 위해 시행착오를 거치고 있다. 본 연구는 이러한 추세에 발맞춰 적대적 생성 신경망을 활용하여 이상 탐지하는 방법을 제안하고자 한다. 시퀀스 데이터를 학습시키기 위해 적대적 생성 신경망의 구조를 LSTM으로 구성하고 생성자의 LSTM은 2개의 층으로 각각 32차원과 64차원의 은닉유닛으로 구성, 판별자의 LSTM은 64차원의 은닉유닛으로 구성된 1개의 층을 사용하였다. 기존 시퀀스 데이터의 이상 탐지 논문에서는 이상 점수를 도출하는 과정에서 판별자가 실제데이터일 확률의 엔트로피 값을 사용하지만 본 논문에서는 자질 매칭 기법을 활용한 함수로 변경하여 이상 점수를 도출하였다. 또한, 잠재 변수를 최적화하는 과정을 LSTM으로 구성하여 모델 성능을 향상시킬 수 있었다. 변형된 형태의 적대적 생성 모델은 오토인코더의 비해 모든 실험의 경우에서 정밀도가 우세하였고 정확도 측면에서는 대략 7% 정도 높음을 확인할 수 있었다.
This paper aims at reviewing the Possibility application over normal or abnormal, detection used by AE and the wear characteristics of grinding process. In this study, when diamond bur in dentistry with chosen grinding conditions were tuned at grinding. The variation of grinding resistance and hE signal is detected by the use of AE measuring system. The tests are carried out in accordance with diamond burs and workpiece; arcyl and bovine. According to the experiment results, the following can be expected; AE has the possibility to detect the state normality and abnormality. However, the grinding resistance measuring can find it difficult to detect it. It can be accurately excerpted from AE occurrence pattern in contact start point of diamond bur and bovine, grinding condition and derailment point. It is known that AE$\_$rms/ is well compatible with grinding resistance. According to the increase of the material removal rate, the specific energy of the diamond bur is inclined to decrease and the grinding resistance has a tendency to increase.
As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.
This paper aims at reviewing the possibility application over normal or abnormal, detection used by AE and the wear characteristics of grinding process. In this study, when diamond bur in dentistry with chosen grinding conditions were tuned at grinding. The variation of grinding resistance and AE signal is detected by the use of AE measuring system. The tests are carried out in accordance with diamond burs and workpiece: arcyl and bovine. According to the experiment results, the following can be expected: AE has the possibility to detect the state normality and abnormality. Hpwever, the grinding resistance measuring can find it difficult to detect it. It can be accurately excepted from AE occurrence pattern in contact start point of diamond bur and bovine, grinding condition and derailment point. It is known that AErms is well compatible with grinding resistance. According to the increase of the material removal rate, the specific energy of the diamond bur is inclined to dectease and the grinding resistance has a tendency to increase.
Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
/
pp.241-241
/
2012
Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.
구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.
In emergency rooms, patients with acute chest pain should be diagnosed as quickly as possible with higher diagnostic accuracy for an appropriate therapy to the patients with acute coronary syndrome or for avoiding unnecessary hospital admissions. At present, electrocardiography(ECG) and biochemical markers are generally used to detect myocardial infarction and coronary angiography is used as a gold standard to reveal the degree of narrowing of coronary artery. Magnetocardiography(MCG) has been proposed as a novel and non-invasive diagnostic tool fur the detection of cardiac electrical abnormality associated with myocardial ischemia. In this study, we examined whether the MCG can be used fur the detection of coronary artery disease(CAD) in patients, who were admitted to the emergency room with acute chest pain. MCG was recorded from 36 patients admitted to the emergency room with suspected acute coronary syndrome. The MCG recordings were obtained using a 64-channel SQUID MCG system in a magnetically shielded room. In result, presence of CAD could be found with a sensitivity of 88.2 % in patients with acute chest pain without 57 elevation in ECG, demonstrating a possible use in the emergency room to screen CAD patients.
최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.
세계 환경규제가 강화되면서 액화천연가스의 사용량이 지속해서 증가하고 있다. 안정적이고 효율적인 액화천연가스 생산을 위해서는 운전 조건을 세분화하여 감시하는 시스템 구축이 필수적이다. 본 연구에서는 천연가스 액화플랜트 성분 분리공정을 해석하여 구축한 동적 모델 데이터를 대상으로 다중 모드 감시시스템 개발 방법을 제안하였다. 먼저 전체 정상 데이터를 주성분분석과 k-평균 군집화 방법론을 사용하여 다중 정상 운전 모델로 구분하였다. 그 다음, 새로운 데이터 값을 k-최근접 알고리즘으로 구축된 다중 정상 모드와 매칭하였다. 마지막으로, 다중 모드 주성분분석 감시 기법을 통해 공정 데이터의 이상 여부를 판별하였다. 제시된 방법론은 45가지 이상경우에 적용하였고, 기본 주성분분석 방법론과 단변수 감시 방법론과의 비교를 통해 속도와 정확도 지표에서 평균 약 5~10%이상 우수함을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.