• 제목/요약/키워드: abnormal flood

Search Result 100, Processing Time 0.024 seconds

Fuzzy Optimal Reservoir Operation Considering Abnormal Flood (이상홍수를 고려한 퍼지 최적 저수지 운영)

  • Choi, Changwon;Yu, Myung Su;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.221-232
    • /
    • 2012
  • In this study, the model enhancing the safety of reservoirs and reducing the downstream flood damage by reservoirs system operation during abnormal flood was developed. Linear programming was used for the optimal reservoirs system operation during an abnormal flood and fuzzy inference system was introduced to solve the uncertainty problem which is included in hydrological factors like inflow, water level and inflow variation of reservoir operation. The linear programming model determined the optimal reservoir system operation rules and could be used in situation where water demands varies rapidly during the abnormal flood events using fuzzy control technique. In this study, the optimal reservoirs system operation for Andong and Imha reservoirs located in the upper basin of Nakdong river was performed in order that the design flood discharge at Andong city would not be exceeded for the design flood of 100 year and PMF(Probable Maximum Flood). And the model that determines the release according to the downstream flow discharge, the reservoir storage, the inflow and the inflow variation of each reservoir was developed using the optimal system operation result and fuzzy control technique. The developed model consisted of 224 fuzzy rules according to the conditions of Andong reservoir, Imha reservoir and Andong city. And the release from each reservoir could be determined when the current data are used as input data through the developed GUI.

Calculation of Abnormallly Large Flood Discharge Amount Destroying the Stage Gaging Station (이상 호우에 의하여 붕괴된 수위국 지점의 홍수량 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.675-678
    • /
    • 2008
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

  • PDF

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

Analysis of Flood Level Mitigation due to the Naju Retention-Basin by Numerical Model Application (수치모형 적용을 통한 나주 강변저류지 홍수위 저감효과 분석)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Cho, Gilje
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5801-5812
    • /
    • 2014
  • The retention basin is a hydraulic structure for flood mitigation by storing river flow over a design flood. In this study, numerical models were adopted to simulate the flood mitigation effects by a retention basin. The large flood condition was applied as a boundary condition to consider an abnormal flood caused by climate change. Furthermore, the two-dimensional numerical model was adopted to regenerate the complex flow pattern due to the topography and lateral flow near the retention basin. The numerical results of the one- and two-dimensional model were analyzed and compared. The results showed that the two-dimensional model is more applicable to assessing flood mitigation by the retention basin with a complex topography and lateral flow patterns.

A Preliminary Study for Vulnerability Assessment to Natural Hazards in Gyeongsangnam-do (경남 시군별 자연재해 취약성 평가 및 유형 분류)

  • Kim, Sung Jae;Kim, Yong Wan;Choi, Young Wan;Kim, Sung Min;Jang, Min Won
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2012
  • This study aimed to evaluate the vulnerability to different natural hazards such as flood, drought, and abnormal climate, and to classify the vulnerability patterns in Gyeongsangnam-do. The damage records and annual budgets during 2000 to 2009 were collected and were ranked for all twelve si-guns. Sancheong-gun and Hamyang-gun resulted in the most vulnerable to flood and drought damages, and Hadong-gun and Yangsan-si were most damaged from abnormal climate such as heavy snow and heavy wind. In addition, three clusters were classified by using Ward's method, and were interpreted. The results showed that the western areas of Gyeongsangnam-do might be more vulnerable to flood damage while drought might threaten the eastern si-guns.

  • PDF

Calculation of Abnormality Large Flood Discharge Destroying the Songcheon Stage Guaging Station by the RUSA in 2002th Year (2002년 루사로 인하여 송천 수위국을 붕괴시킨 이상 홍수량의 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.165-171
    • /
    • 2003
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin (하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

Analysis of Flood Characteristics in Urban Stream Basin Using Numerical Models (수치모형을 이용한 도시 하천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Choi, Byung-Hwa
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.599-602
    • /
    • 2007
  • Flood damage has been increased due to abnormal climate and extreme rainfall. Especially, the increase of impervious areas and the decrease of flow travel times due to the urbanization have been caused heavy division of flood with the recent rainfall characteristics. In this study, hydrodynamics flow analysis has been needed two dimensional numerical analysis for correct stream flow interpretations on bridges as hydraulic structures in rivers. Therefore, comparative analysis has been accomplished by using HEC-RAS model and SMS-RMA2 model for one and two dimensional flow. Also, flood characteristics have been analyzed in urban stream basin.

  • PDF

A Basic Study for Analysis of Moving Characteristics of Thinning Slash (숲가꾸기 산물의 이동특성 분석을 위한 기초연구)

  • Jun, Kye-Won;Lee, Ho-Jin;Yeon, Gyu-Bang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.719-722
    • /
    • 2008
  • Forest management is done to keep ecological health of forest and to enhancement of its function. Nowadays, the abnormal climate and heavy rain happen frequently. Therefore, there are opinions that the thinning slash allowed in the mountain is flowed in rivers, which can influence in flood damage. This study, we grasp moving characteristics of thinning slash through field survey and achieved basic study about the effect of thinning slash on the discharge capacity of rivers and stream structure.

  • PDF

Flood analysis for agriculture area using SWMM model: case study on Sindae drainage basin

  • Inhyeok Song;Hyunuk An;Mikyoung Choi;Heesung Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.799-808
    • /
    • 2023
  • Globally, abnormal climate phenomena have led to an increase in rainfall intensity, consequently causing a rise in flooding-related damages. Agricultural areas, in particular, experience significant annual losses every year due to a lack of research on flooding in these regions. This study presents a comprehensive analysis of the flood event that occurred on July 16, 2017, in the agricultural area situated in Sindaedong, Heungdeok-gu, Cheongju-si. To achieve this, the EPA (United States Environmental Protection Agency) Storm Water Management Model (SWMM) was employed to generate runoff data by rainfall information. The produced runoff data facilitated the identification of flood occurrence points, and the analysis results exhibited a strong correlation with inundation trace maps provided by the Ministry of the Interior and Safety (MOIS). The detailed output of the SWMM model enabled the extraction of time-specific runoff information at each inundation point, allowing for a detailed understanding of the inundation status in the agricultural area over different time frames. This research underscores the significance of utilizing the SWMM model to simulate inundation in agricultural areas, thereby validating the efficacy of flood alerts and risk management plans. In particular, the integration of rainfall data and the SWMM model in flood prediction methodologies is expected to enhance the formulation of preventative measures and response strategies against flood damages in agricultural areas.