• Title/Summary/Keyword: abiotic soil improvement

Search Result 8, Processing Time 0.02 seconds

Removal of Nitrate in River Water by Microorganisms in Saturated-Zone Soil: Laboratory-Scale Column Test (포화층 토양미생물에 의한 하천수의 nitrate 제거: 실험실규모 컬럼 실험)

  • Park, Jungyong;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • Aquifer recharge and recovery is a technology used to ensure a stable supply of clean water. During the process, river water is injected into a soil aquifer and stored. The stored water is then recovered and used to produce drinking water. It is important to understand quality improvement of the injected water while it is stored in the aquifer. In the present study, a lab-scale column reactor containing saturated-zone soil was employed to mimic an aquifer. The reactor was used to investigate microbial removal of nitrate that is a major inorganic contaminant detected in the Nakdong River. The reactor was introduced with river water that contained nitrate at concentrations (5.07, 6.81, 8.27, and 11.07 mg $NO_3{^-}/l$) detected downstream of the Nakdong River in the past 2 years. The nitrate concentrations decreased during the introduced water is retained in the reactor. Effluent from the reactor contained 1.49 mg $NO_3{^-}/l$ or less and had an average pH of 7.98 regardless of the nitrate concentrations of the influent. However abiotic control reactor showed similar nitrate-concentrations in its influent and effluent. Considering the result of abiotic control, the decreased nitrate concentration observed in the test column suggested that microorganisms in saturated-zone soil removed nitrate in the river water introduced into the reactor. Results of this study will be used to better understand microbial improvement of water quality in aquifer recharge and recovery technology.

Soybean Improvement for Drought, Salt and Flooding Tolerance

  • Pathan, Safiullah;Nguyen, Henry T.;Sharp, Robert E.;Shannon, J. Grover
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.329-338
    • /
    • 2010
  • Drought, salinity and flooding are three important abiotic factors limiting soybean production worldwide. Irrigation, soil reclamation, and drainage systems are not generally available or economically feasible for soybean production. Therefore, productive soybean varieties with tolerance are a cost effective means for reducing yield losses due to these factors. Genetic variability for higher tolerance to drought, salt and flooding is important. However, only a small portion of nearly 200,000 world soybean accessions have been screened to find genotypes with tolerance for use in breeding programs. Evaluation for tolerance to drought, salinity and flooding is difficult due to lack of faster, cost effective, repeatable screening methods. Soybean strains with higher tolerance to the above stresses have been identified. Crosses with lines with drought, salt and flooding tolerance through conventional breeding has made a significant contribution to improving tolerance to abiotic stress in soybean. Molecular markers associated with tolerance to drought, salt and flooding will allow faster, reliable screening for these traits. Germplasm resources, genome sequence information and various genomic tools are available for soybean. Integration of genomic tools coupled with well-designed breeding strategies and effective uses of these resources will help to develop soybean varieties with higher tolerance to drought, salt and flooding.

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Selection of Preventers of Rusty Ginseng Roots from Natural Resources (천연자원으로부터 인삼 적변방제물질의 선발)

  • Ban, Sung-Hee;Shin, Sun-Hee;Woo, Hyun-Jung;Yang, Deok-Cho
    • Journal of Ginseng Research
    • /
    • v.26 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • We screened biotic and abiotic preventative,i(preventers) from natural resources to prevent the rusty phenomenon in ginseng roots. To select preventatives(preventers), soil microbes such as Agrobacterium and certain microbes isolated from the rusty ginsengs and the soil in which the rusty ginsengs were planted and used. It is also performed with germination tests of the seeds of Latuca Sativa L. We identified that how selected preventatives(preventers) effect the germination of ginseng seeds. Furthermore, how these influence on the rusty phenomenon and the growth of 1 -year-old ginsengs treated in the pavement. The final preventatives; ICPE-C1$\sub$05/, ICPE-P$\^$107/ were effective in not only the growth of ginseng, but also inhibition of the rusty phenomenon. Moreover, we selected abiotic soil improvers; called P, R, and W, respectively; to promote the effects of preventatives. R and W was excellented among choring improvers. The germination rate of 2-year-old ginsengs treated with ICPE-C$\sub$105/P, and ICPE-P$\sub$107/P was the highest under the effects of naturally selected preventatives mixing with abiotic soil improvers. All treat which was compounding preventers & improvers were so excellented of growth ginseng. Especially treats of ICPE-C$\sub$105/R and ICPE-P$\sub$107/R showed growth increased of each 67.3% and 52.7% As well, the growth of ginseng was the highest in the treatment of ICPE-C$\sub$105/R, and ICPE-P$\sub$105/R. Though rusty of rate was emerged 35% in control, preventers ICPE-C$\sub$105/R and ICPE-P$\sub$107/R were emerged 5.3%. It was affirmed effective of preventer. On the other hands, amounts of ginsenoside treated with preventatives showed to be changed. The ginsenoside was increased to 14.2% with treatment with ICPE-P$\sub$107/R which is highest among groups compared to control, and ICPE-C$\sub$105/P was increased to 5.0%. To sum up with total results, it is judged that biotic preventatives (ICPE-C$\sub$105/R, and ICPE-P$\sub$107/R) which we created improve both a high yield of ginseng and the inhibition of the rusty phenomenon. phenomenon.

Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions

  • Gopal, Selvakumar;Chandrasekaran, Murugesan;Shagol, Charlotte;Kim, Ki-Yoon;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.582-592
    • /
    • 2012
  • Microorganisms present in the rhizosphere soil plays a vital role in improving the plant growth and soil fertility. Many kinds of fertilizers including chemical and organic has been approached to improve the productivity. Though some of them showed significant improvement in yield, they failed to maintain the soil properties. Rather they negatively affected soil eventually, the land became unsuitable for agricultural. To overcome these problems, microorganisms have been used as effective alternative. For past few decades, plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) have been used as effective inoculants to enhance the plant growth and productivity. PGPR improves the plant growth and helps the plant to withstand biotic and abiotic stresses. AM fungi are known to colonize roots of plants and they increase the plant nutrient uptake. Spore associated bacteria (SAB) are attached to spore wall or hyphae and known to increase the AMF germination and root colonization but their mechanism of interaction is poorly known. Better understanding the interactions among AMF, SAB and PGPR are necessary to enhance the quality of inoculants as a biofertilizers. In this paper, current knowledge about the interactions between fungi and bacteria are reviewed and discussed about AMF spore associated bacteria.

Physiology, genomics and molecular approaches for lmproving abiotic stress tolerance in rice and impacts on poor farmers

  • Ismail, Abdelbagi M.;Kumar, Arivnd;Singh, R.K.;Dixit, Shalabh;Henry, Amelia;Singh, Uma S.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.7-7
    • /
    • 2017
  • Unfavorable weather and soil conditions reduce rice yield and land and water productivity, aggravating existing encounters of poverty and food insecurity. These conditions are foreseen to worsen with climate change and with the unceasing irrational human practices that progressively debilitate productivity despite global appeals for more food. Our understanding of plant responses to abiotic stresses is advancing and is complex, involving numerous critical processes - each controlled by several genetic factors. Knowledge of the physiological and molecular mechanisms involved in signaling, response and adaptation, and in some cases the genes involved, is advancing. Moreover, the genetic diversity being unveiled within cultivated rice and its wild relatives is providing ample resources for trait and gene discovery, and this is being scouted for rice improvement using modern genomics and molecular tools. Development of stress tolerant varieties is now being fast-tracked through the use of DNA markers and advanced breeding strategies. Large numbers of drought, submergence and salt tolerant varieties were commercialized over recent years in South and Southeast Asia and more recently in Africa. These varieties are making significant changes in less favorable areas, transforming lives of smallholder farmers - progress considered incredulous in the past. The stress tolerant varieties are providing assurance to farmers to invest in better management of their crops and the ability to adjust their cropping systems for even higher productivity and more income, sparking changes analogous to that of the first green revolution, which previously benefited only favorable irrigated and rainfed areas. New breeding tools using markers for multiple stresses made it possible to develop more resilient, higher yielding varieties to replace the aging and obsolete varieties still dominating these areas. Varieties with multiple stress tolerances are now becoming available, providing even better security for farmers and lessening their production risks even in areas affected by complex and overlapping stresses. The progress made in these less favorable areas triggered numerous favorable changes at the national and regional levels in several countries in Asia, including adjusting breeding and dissemination strategies to accelerate outreach and enabling changes at higher policy levels, creating a positive environment for faster progress. Exploiting the potential of these less productive areas for food production is inevitable, to meet the escalating global needs for more food and sustained production systems, at times when national resources are shrinking while demand for food is mounting. However, the success in these areas requires concerted efforts to make use of existing genetic resources for crop improvement and establishing effective evaluation networks, seed production systems, and seed delivery systems to ensure faster outreach and transformation.

  • PDF

Simulation of crop growth under an intercropping condition using an object oriented crop model (객체지향적 작물 모델을 활용한 간작조건에서의 작물 생육 모의)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Seo, Beom-Seok;Ban, Ho-Young;Park, Jinyu;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.214-227
    • /
    • 2018
  • An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.

Investigation of Root Morphological and Architectural Traits in Adzuki Bean (Vigna angularis) Cultivars Using Imagery Data

  • Tripathi, Pooja;Kim, Yoonha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • Roots play important roles in water and nutrient uptake and in response to various environmental stresses. Investigating diversification of cultivars through root phenotyping is important for crop improvement in adzuki beans. Therefore, we analyzed the morphological and architectural root traits of 22 adzuki bean cultivars using 2-dimensional (2D) root imaging. Plants were grown in plastic tubes [6 cm (diameter) × 40 cm (height)] in a greenhouse from July 25th to August 28th. When the plants reached the 2nd or 3rd trifoliate leaf stage, the roots were removed and washed with tap water to remove soil particles. Clean root samples were scanned, and the scanned images were analyzed using the WinRHIZO Pro software. The cultivars were analyzed based on six root phenotypes [total root length (TRL), surface area (SA), average diameter (AD), and number of tips (NT) were included as root morphological traits (RMT); and link average length (LAL) and link average diameter (LAD) were included as root architectural traits (RAT)]. According to the analysis of variance (ANOVA), a significant difference was observed between the cultivars for all root morphological traits. Distribution analysis demonstrated that all root traits except LAL followed a normally distributed curve. In the correlation test, the most important morphological trait, TRL, showed a strong positive correlation with SA (r = 0.97***) and NT (r = 0.94***). In comparison, between RMT and RAT, TRL showed a significantly negative correlation with LAL (r = -0.50***); however, TRL did not show a correlation with LAD. Based on RMT and RAT, we identified the cultivars that ranked 5% from the top and bottom. In particular, the cultivar "IT 236657" showed the highest TRL, SA, and NT, while the cultivar "IT 236169" showed the lowest values for TRL, SA, and NT. In addition, the coefficient of variance for the six tested root traits ranged from (14.26-40%) which suggested statistical variability in root phenotypes among the 22 adzuki bean varieties. Thus, this study will help to select target root traits for the adzuki bean breeding program in the future, generating climate-resilient adzuki beans, especially for drought stress, and may be useful for developing biotic and abiotic stress-tolerant cultivars based on better root trait attributes.