• Title/Summary/Keyword: abelian subgroups

Search Result 31, Processing Time 0.024 seconds

FREE ACTIONS ON THE NILMANIFOLD

  • Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.161-175
    • /
    • 1997
  • We classify free actions of finite abelian groups on the 3-dimensional nilmanifold, up to topological conjugacy. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal subgroups of almost Bieberbach groups of finite index, up to affine conjugacy.

  • PDF

PERTURBATION OF DOMAINS AND AUTOMORPHISM GROUPS

  • Fridman, Buma L.;Ma, Daowei
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.487-501
    • /
    • 2003
  • The paper is devoted to the description of changes of the structure of the holomorphic automorphism group of a bounded domain in \mathbb{C}^n under small perturbation of this domain in the Hausdorff metric. We consider a number of examples when an arbitrary small perturbation can lead to a domain with a larger group, present theorems concerning upper semicontinuity property of some invariants of automorphism groups. We also prove that the dimension of an abelian subgroup of the automorphism group of a bounded domain in \mathbb{C}^n does not exceed n.

Interval-Valued Fuzzy Cosets

  • Lee, Keon-Chang;Hur, Kul;Lim, Pyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.646-655
    • /
    • 2012
  • First, we prove a number of results about interval-valued fuzzy groups involving the notions of interval-valued fuzzy cosets and interval-valued fuzzy normal subgroups which are analogs of important results from group theory. Also, we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and abelian groups. Secondly, we prove that if A is an interval-valued fuzzy subgroup of a group G such that the index of A is the smallest prime dividing the order of G, then A is an interval-valued fuzzy normal subgroup. Finally, we show that there is a one-to-one correspondence the interval-valued fuzzy cosets of an interval-valued fuzzy subgroup A of a group G and the cosets of a certain subgroup H of G.

FURTHER RESULTS OF INTUITIONISTIC FUZZY COSETS

  • HUR, KUL;KANG, HEE WON;KIM, DAE SIG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.369-388
    • /
    • 2005
  • First, we prove a number of results about intuitionistic fuzzy groups involving the notions of intuitionistic fuzzy cosets and intuitionistic fuzzy normal subgroups which are analogs of important results from group theory. Also, we introduce analogs of some group-theoretic concepts such as characteristic subgroup, normalizer and Abelian groups. Secondly, we prove that if A is an intuitionistic fuzzy subgroup of a group G such that the index of A is the smallest prime dividing the order of G, then A is an intuitionistic fuzzy normal subgroup. Finally, we show that there is a one-to-one correspondence the intuitionistic fuzzy cosets of an intuitionistic fuzzy subgroup A of a group G and the cosets of a certain subgroup H of G.

  • PDF

POLYGONAL PRODUCTS OF RESIDUALLY FINITE GROUPS

  • Wong, Kok-Bin;Wong, Peng-Choon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • A group G is called cyclic subgroup separable for the cyclic subgroup H if for each $x\;{\in}\;G{\backslash}H$, there exists a normal subgroup N of finite index in G such that $x\;{\not\in}\;HN$. Clearly a cyclic subgroup separable group is residually finite. In this note we show that certain polygonal products of cyclic subgroup separable groups amalgamating normal subgroups are again cyclic subgroup separable. We then apply our results to polygonal products of polycyclic-by-finite groups and free-by-finite groups.

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.

RICCI CURVATURE, CIRCULANTS, AND EXTENDED MATCHING CONDITIONS

  • Dagli, Mehmet;Olmez, Oktay;Smith, Jonathan D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.201-217
    • /
    • 2019
  • Ricci curvature for locally finite graphs, as proposed by Lin, Lu and Yau, provides a useful isomorphism invariant. A Matching Condition was introduced as a key tool for computation of this Ricci curvature. The scope of the Matching Condition is quite broad, but it does not cover all cases. Thus the current paper introduces extended versions of the Matching Condition, and applies them to the computation of the Ricci curvature of a class of circulants determined by certain number-theoretic data. The classical Matching Condition is also applied to determine the Ricci curvature for other families of circulants, along with Cayley graphs of abelian groups that are generated by the complements of (unions of) subgroups.

SELF-MAPS ON M(ℤq, n + 2) ∨ M(ℤq, n + 1) ∨ M(ℤq, n)

  • Ho Won Choi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.289-296
    • /
    • 2023
  • When G is an abelian group, we use the notation M(G, n) to denote the Moore space. The space X is the wedge product space of Moore spaces, given by X = M(ℤq, n+ 2) ∨ M(ℤq, n+ 1) ∨ M(ℤq, n). We determine the self-homotopy classes group [X, X] and the self-homotopy equivalence group 𝓔(X). We investigate the subgroups of [Mj , Mk] consisting of homotopy classes of maps that induce the trivial homomorphism up to (n + 2)-homotopy groups for j ≠ k. Using these results, we calculate the subgroup 𝓔dim#(X) of 𝓔(X) in which all elements induce the identity homomorphism up to (n + 2)-homotopy groups of X.