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FURTHER RESULTS OF INTUITIONISTIC FUZZY
COSETS

Kur Hur, HEE WoN KANG AND DAE S1G6 KM

Abstract. First, we prove a number of results about intuitionistic
fuzzy groups involving the notions of intuitionistic fuzzy cosets and
intuitionistic fuzzy normal subgroups which are analogs of impor-
tant results from group theory. Also, we introduce analogs of some
group-theoretic concepts such as characteristic subgroup, normal-
izer and Abelian groups. Secondly, we prove that if A is an in-
tuitionistic fuzzy subgroup of a group G such that the index of A
is the smallest prime dividing the order of G, then A is an intu-
itionistic fuzzy normal subgroup. Finally, we show that there is a
one-to-one correspondence the intuitionistic fuzzy cosets of an intu-
itionistic fuzzy subgroup A of a group G and the cosets of a certain

subgroup H of G.

0. Introduction

The concept of a fuzzy set was introduced by Zadeh[19], and it is now
a rigorous area of research with manifold applications raging from engi-
neering and computer science to medical diagnosis and social behavior
studies. In particular, several researchers [6, 15-18] applied the notion

of an fuzzy set to group theory.
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As a generalization of fuzzy sets, the notion of intuitionistic fuzzy
sets was introduced by Atanassov(l] in 1986. After that time, Coker and
his colleagues [4,5,7], Lee and Lee[14], and Hur and his colleagues [12]
applied the concept of intuitionistic fuzzy sets to topology. In particular,
Hur and his colleagues [11] applied the notion of intuitionistic fuzzy sets
to topological group. Also, several researchers [2,3,8-10,13] applied one
to group theory.

The present paper is a sequel to [13]. We obtain a number of fur-
ther analogs of the properties of groups, thereby enriching the theory
of intuitionistic fuzzy groups and, in particular, corroborating the con-
cept of intuitionistic fuzzy normal subgroups and intuitionistic fuzzy
cosets introduced in [9,13]. Moreover, we obtain an analog of the fol-
lowing standard result from group theory that if 8 is an automorphism
of a group G which leaves invariant some normal subgroup N, then 0
induces an automorphism of the quotient group G/N.

Some variations of this result are also considered, for which we ob-
tain analogs for intuitionistic fuzzy groups. Also we show that there
is a natural one-to-one correspondence between the intuitionistic fuzzy
cosets of an intuitionistic fuzzy subgroup A of a group G and the cosets

of a subgroup G4 of G defined by
Ga={g€G:Alg) = A(e)},

where e denotes, as usual, the identity element of the group G. Our
analysis illustrates that the subgroup G4 defined above plays a signifi-
cant role in investigating the structure of the corresponding intuitionistic

fuzzy subgroup.

1. Preliminaries

In this section, we list some basic concepts and well-known results

which are needed in the later sections.
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For sets X,Y and Z,f = (f1,f2) : X — Y x Z is called a complez
mapping if f1: X — Y and fp : X — Z are mappings.

Throughout this paper, we will denote the unit interval [0,1] as I.

Definition 1.1{1,4]. Let X be a nonempty set. A complex mapping
A= (pa, va): X — I x I is called an intuitionistic fuzzy set (in short,
IFS) in X if pa(z) + va(z) < 1 for each z € X, where the mapping
pa: X — I and vg : X — I denote the degree of membership (namely
pa(z)) and the degree of nonmembership (namely v4(z)) of each z € X
to A, respectively. In particular, O~ and 1. denote the intuitionistic
fuzzy empty set and the intuitionistic fuzzy whole set in X defined by
0-(z) = (0,1) and 1.(z) = (1,0) for each = € X, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 1.2[9]. Let G be a group with the identity e and let A €
IFS(G). Then A is called an intuitionistic fuzzy subgroup(in short, IFG)
of G if

(i) pa(zy) > pa(z) A pay) and va(zy) < va(z) V va(y) for any
z,y € G.

(ii) pa(z™) > pa(z) and va(z™!) < va(z) for each z € G.

We will denote the set of all IFGs of G as IFG(G).

Result 1.A[9, Proposition 2.6]. Let G be a group with the iden-
tity e and let A € IFG(G). Then A(z™}) = A(z) and pa(z) < pale),
va(z) > vale) for each z € G.



372 Kul Hur, Hee Won Kang and Dae Sig Kim

Result 1.B[9, Proposition 2.7]. If A € IFG(G), then G4 = {z € G :
A(z) = A(e)} is a subgrpup of G.

Result 1.C[9, Proposition 2.3]. Let {Ay}aecr C IFG(G). Then
Neer Aa € IFG(G).

Definition 1.3[9]. Let G be a group with the identity e and let 4 €
IFG(G). Then A is called an intuitionistic fuzzy normal subgroup(in
short, IFNG) of G if A(zy) = A(yz) for any z,y € G.

We will denote the set of all IFNGs of G as IFNG(G).

2. Intuitionistic fuzzy subgroups

Definition 2.1. Let A be an IFG of a group G and let § : G — G be
a mapping. We define a complex mapping A% = (ji40,040) : G — I x I
as follows : for each g € G, A%(g) = A(6(g)).

For a group G, a subgroup K is called a characteristic subgroup if

9(K) = K for every automorphism 6 of G.
We now define an analog.

Definition 2.2. Let A be an IFG of a group G. Then A is called an
intuitionistic fuzzy characteristic subgroup of G if A% = A for every au-

tomorphism 6 of G.

Theorem 2.3. Let G be a group, let A € IFS(G) and let 8 : G — G be
a mapping,
(1) If A € IFG(G) and 6 is a homomorphism, then A¢ € IFG(G).
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(2) If A is an intuitionistic fuzzy characteristic subgroup of G, then
A € IFNG(G).

Proof. (1) Let z,y € G. Then

A(zy) = A(B(ay))

= A(8(z)8(y)). (Since 6 is a homomorphism)
Since A € IFG(G),

pa(B(z)0(y)) > pa(@(x) A pa(@(y) = pao(x) A prae(y)
and

va(0(2)0(y)) < va(8(@)) vV va(0(y)) = vae(z) V v a0 (y)-
Thus pge(zy) > pae (@) A pae(y) and vae(zy) < vae(x) V vae(y)-
On the other hand,

AP(a™t) = A(B(z™))

= A(6(z)"!) (Since 6 is a homomorphism)

= A(f(z)) (By Result 1.A)

= A%(z).
Hence A? € IFG(G).

(2) Let 8 : G — G be the automorphism of G defined by

0(g) = z~'gx for each g € G.
Then clearly it is standard result that 6 is an automorphism of G, called
the inner automorphism induced by z. Let z,y € G. Since A is intu-
itionistic fuzzy characteristic, A% = A. Thus

A(zy) = A%(zy) = A(0(zy)

= A(z"(zy)z) (By the definition of )

= A(yz).
Hence A € IFNG(G). This completes the proof. l

Remark 2.4. Theorem 2.3(2) is an analog of the result that a charac-

teristic subgroup of a group is normal.
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Now we obtain analogs of the concepts of conjugacy, normalizer re-

garding a group, and their properties.

Definition 2.5. Let G be a group and let Ay, Ay € IFG(G). Then
we say that A; is conjugate to Ao if there exists an z € G such that
Ai1(g) = Az(z71gz) for each g € G.

It is easy to show that the relation of conjugacy is an equivalence re-
lation on IFG(G). Hence IFG(G) is a union of pairwise disjoint classes
of intuitionistic fuzzy subgroups each consisting of intuitionistic fuzzy
subgroups which are equivalent to one another. Now we shall obtain an
expression giving the number of distinct conjugates of an intuitionistic

fuzzy subgroups.

Notation. Let G be a group, let A € IFG(G) and let g € G. We define
a complex mapping AY = (u49,v49) : G — I x I as follows : for each
ued,

A9(u) = A(g™ ug), ie., pas(u) = pa(g~ ug) and vao(u) = valglug).
From Theorem 2.3(1), it is clear that A9 € IFG(G).

Definition 2.6. Let A be an IFG of a group G. Then the set
N(A)={geG:A9=A4}

is called the normalizer of A.

Theorem 2.7. Let A be an IFG of a group G. Then

(1) N(A) is a subgroup of G.

(2) A € IFNG(G) id and only if N(4) = G.

(3) If G is a finite group, then the number of distinct conjugates of
A is equal to the index of N(A) in G.
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Proof. (1) Let g,h € N(A) and let w € G. Then
AMu) = A((gh)Mulgh)) = A(h™H g™ ug)h) = AM(g ™ ug) = (A%)?(u).
Thus A% = (A9)" = A" = A. So gh € N(A). Let = € N(A) and let
y=2a"1. Let u € G. Then
AV(w) = Alyuy) = Alzus) = A5 e 1a) )
= A(r~'u~'z) (By Result 1.A)
= A*(u!) (By the definition of A%)
= A(u™!) (Since A* = A)
= A(u). (By Result 1.A)
Thus AY = A. Soy =7} € N(A). Hence N(A) is a subgroup of G.
(2)(=): Suppose A € IFNG(G) and let g € G. Let u € G. Then
A9(u) = A9~ ug) = A((g7 u)g)
= A(g(g7'u)) (Since 4 € IFNG(G))
= A(u).
Thus A9 = A. So g € N(A), i.e., G C N(A). Hence N(A) =G.
(<): Suppose N(A) = G and let z,y € G. Then
A(zy) = A(zyzz™) = Alz(yz)z~")
= A% '(yz) (By the definition of A%™")
= A(yz). (By the hypothesis)
Hence A € IFNG(G).
(3) Consider the decomposition of G as a union of cosets of N(A);
G=mNA)UzaNA)U---UzN(A) (1)
, where k is the number of distinct cosets, i.e., the index of N(A) in G.
Let x € N(A) and choose i such that 1 <1 < k. Let g € G. Then
Am(g) = A((ziz) M g(ziz)) = Al (a7 gai)a) = A” (2] gi)
= A(z;'gz;) (Since z € N(A))
= A%(g).
Thus A%® = A% for each x € N(A) and 1 < ¢ < k. So any two
elements of G which lie in the same coset z;/N(A) give rise to the same

conjugate A% of A. Now we show that two distinct cosets give two
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distinct conjugates of A. Assume that A% = A%, where i # j and
1<i<k 1<j<k. Let g€ G. Then
A%i(g) = A% (g), i.e., A(z]'gz;) = A(:vj_lg:rj). (2)
Let h € G such that g = I]’hl‘;l. Then, by (2),
A(a:i_lxjha:j‘lxi) = A(l‘;livjh.r;ll‘j)
= A((:Bi_lmj)h(:v;lwi)) = A(h), i.e., A((m}lxi)‘lh(m]-"lxi)) = A(h)
= A% F(h) = A(h), ie., A% © = A.
Thus xj—lzci € N(A). So z;N(A) = x; N(A). Since (1) represent a par-
tition of G into pairwise disjoint cosets and ¢ # j, this is not possible.
Hence the number of distinct conjugates of A is equal to the index of

N(A) in G. This completes the proof. B

Remark 2.8. Theorem 2.7(2) illustrates the motiviation behind the
term ”normalizer” and it shows the analogy with the fact that a sub-
group H of a group G is normal in G if and only if the normalizer of H
in G is equal to G itself. And Theorem 2.7(3) is an analog of a basic

result in group theory.
Definition 2.9[13]. Let A be an IFG of a group G and let z € G. We
define two complex mappings

Ar = (paz,Vaz) : G > I x 1T

and

TA = (pga,vea): G-I x1
as follows, respectively : for each g € G,
Az(g) = A(gz™") and zA(g) = Az 'g).
Then Az(resp.zA] is called the intuitionistic fuzzy right [resp.left] coset

of G determined by z and A.

Lemma 2.10. Let A be an IFG of a group G and let
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K ={z e G: Az = Ae},
where e denotes the identity element of G. Then K is a subgroup of G.
Furthermore, G4 = K.

Proof. Let £k € K and let ¢ € G. Then Ak(g) = Ae(g). Thus
A(gk™") = A(g). In particular, A(ek™1) = A(e), ie., A(k™1) = Ae).
Thus k™! € G4. By Result 1.B, G4 is a subgroup of G. Thus k € G4.
So K C G4. Now let h € G4. Then

A(h) = A(e). (3)
Let g € G. Then Ah(g) = A(gh™!) and Ae(g) = A(g).
Thus

palgh™) 2 palg) A palh™)

= puA(g) A pa ( ) (By Result 1.A)

= pa(g) A pale) (By (3))

= pa(g) (By Result 1.A)
and

va(gh™) < valg) v va(h™) = valg) V va(h)

=valg) Vvale) = va(g)
Also,

palg) = pa(gh™ h) > pa(gh™) A pa(h)

= palgh™) Apale) (By (3))

palgh™) (By Result 1.A)

and

va(9) = va(gh™'h) <wva(gh™') Vva(h)

=va(gh )V =va(gh™!) .
So A(gh™!) = A(g), i.e., Ah = Ae, ie., h € K. Hence G4 C K. There-
fore G4 = K. This completes the proof. B

Corollary 2.10[9, Proposition 3.5]. Let G be a group. If A €
IFNG(G), then G4 < G.
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Proof. Let g € G and let z € G4. Then

Al(g7zg) = A(gg~'z) (Since A € IFNG(Q))

Il
'

(€). (Since z € G4)

Thus ¢ 'zg € G4. Hence G4 < G. B

For a group G, the commutator [z,y] of two elements z,y in G is de-

lzy. If zy = yz, then obviously [z,y] = e. Thus

fined as [z,y] = 271y~
G is abelian if [z,y] = e for all z,y € G. This motivates the following

definition.

Remark 2.11. A special case of Lemma 2.10 is implicit in our pre-
vious paper[13, Theorem 3.12], where it was tacitly assumed that A is
intuitionistic fuzzy normal. But, as we see now, it is not necessarily to
assume that A is intuitionistic fuzzy normal, and this fact straightens
the proof of the intuitionistic fuzzy Lagrange’s theorem [13, Theorem
3.12].

Definition 2.12. Let A be an IFG of a group GG. Then A is said to be
intuitionistic fuzzy abelian if

A(lz,y]) = A(e) for any z,y € G.

Result 2.A[13]. Let A € IFG(G). Then A € IFNG(G) if and only if
pa([z,y]) > pa(z) and va([z,y]) < va(z) for any 2,y € G.

Analogous to some well-known properties of abelian group, we prove.

Theorem 2.13. (1) An intuitionistic fuzzy abelian subgroup of a group

is intuitionistic fuzzy normal.
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(2) Given an intuitionistic fuzzy abelian subgroup of G, there is a
normal subgroup N of G such that G/N is abelian.

Proof. (1) Let A be an intuitionistic fuzzy abelian subgroup of G.
Let z,y € G. Then, by Result 1.A, pa(lz,y]) = nale) > pna(z) and
va([z,y]) = va(e) < va(z). Hence, by Result 2.A, A € IFNG(G).

(2) Let A be an intuitionistic fuzzy abelian subgroup of G. Then, by
(1), A € IFNG(G). Thus, by Corollary 2.10, G4 < G. Also, it is easy
to see that G’ C G4, where G’ denotes the commutator subgroup of G
(i.e., the subgroup generated by all elements [z,y], z,y € G). Hence
G/G 4 is abelian. B

The following is the immediate result of Definition 1.3 and Result 1.C.

Proposition 2.14. If {A, }aer is a family of IFNGs of a group G, then
Naer Aa € IFNG(G). Furthermore, if A, B € IFNG(G), then AN B €
IFNG(G).

It is a standard result in group theory that if G is a group, H <
G,K <G and H <G, then HNK < K is normal in K. Now we derive

an analog for intuitionistic fuzzy subgroups.

Proposition 2.15. Let G be a group and let A € IFG(G), B €
IFNG(G). Then AN B is an intuitionistic fuzzy normal subgroup of
the group G 4.

Proof. It is clear that G 4 is a subgroup of G by Result 1.B. By Propo-
sition 2.14, AN B € IFG(G). Thus AN B € IFG(G4). Let z,y € Ga.
Since G4 is a subgroup of G, zy € G4 and yx € G4. Thus

A(zy) = Ayz) = Ale).
Since B € IFNG(G), B(zy) = B(yz). So
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(AN B)(zy) = (ralzy) A up(zy), valzy) V vp(zy))
= (pa(yz) A pp(yz), va(yr) vV vp(yz))
= (AN B)(yz).

Hence AN B € IFNG(G4). &

3. Intuitionistic fuzzy cosets

Result 3.A[13, Proposition 2.6]. Let A be an IFG of a group G.
Then the followings are equivalent :
(1) pa(zyz™) 2 paly) and va(zyz™') < va(y) for any z,y € G.
(2) A(zyz~1) = A(y) for any z,y € G.
(3) A € IFNG(G).
(4) zA = Az for each z € G.
(5) Az~ = A for each z € G.

Remark 3.1. We shall restric ourselves in the subsequent discus-
sion, without any loss of generality, with intuitionistic fuzzy right cosets
only(corresponding results for intuitionistic fuzzy left cosets could be
obtained without any difficulty). Consequently from now on we call an
intuitionistic fuzzy right coset an intuitionistic fuzzy coset and denote it

as Az for each z € G.

Definition 3.2[13]. Let A be an IFG of a finite group G. Then the
cardinality |G/A| of G/A is called an indez of A, where G/A denotes

the set of all intuitionistic fuzzy cosets of A.

Result 3.B[13, Theorem 3.7]. Let A be an IFNG of a group G. We

define an operation * on G/A as follows : for any z,y € G,

Az x Ay = Azxy.
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Then (G/A, *) is a group.

Result 3.C[13, Theorem 3.12]. Let A be an IFG of a finite group G.
Then the index of A divides the order of G.

It is a well-known result in group theory that subgroup of index 2 is
a normal subgroup. We now obtain an analog of a generalization of this

result.

Theorem 3.3. Let A be an IFG of a finite group G such that the index
of A is p, where p is the smallest prime dividing the order of G. Then
A € IFNG(G).

Proof. By Result 1.B, G 4 is a subgroup of G. Then, by Lemma 2.10 and
Result 3.C, G4 has index p in G, i.e., G4 has p distinct (right) cosets,
say, {Gaz; : 1 <1 < p}. Now consider the permutation representation
of G on the cosets of G4 given by the map

T X — g1,
where 7,1 : Gaz; — Gaz;z~', 1 <4 < p. Since the index of G4 in
G is p, 7 is an isomorphism of G into the symmetric group S,. Futher-
more, Kerm = Core(G4), where Core(G4) denotes the intersection of
all the conjugates ¢g7'Gag, ¢ € G. By the fundamental theorem of
homomorphism of groups and using Lagrange’s theorem, the order of
G/Core(G4) divides p! which is the order of Sp. Since

G/Core(Ga) = (G/Ga) (Ga/Core(Ga))
and the order of G/G 4 is p, it follows that the order of G4/Core(Ga)
divides (p — 1)!. Since the order of G4 divides the order of G, G4 =
Core(G 4); otherwise we get a contradiction to the fact that p is the
smallest prime dividing the order of G. Since Core(G4) is a normal
subgroup of G, G 4 is a normal subgroup of G. Now consider the quotient
group G/H. Since the order of G/G4 is p, G/G 4 is abelian. Let z,y €
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G. Then (Gaz)(Gay) = (Gay)(Gaz). Thus Gazy = Gayz. So there
exists an A € G4 such that zy = hyz. Then

pa(zy) = palhyz) > pa(h) A pa(yz) = pale) A palyz) = pa(yz)
and
va(zy) = valhyz) < va(h) Vvalyz) = vale) Vva(yz) = valyz).

Similarly, we have

a(ye) > palzy) and va(ye) = va(ey).
So A(zy) = A(yz) for any 2,y € G. Hence A € IFNG(G). This com-
pletes the proof. B

The following is the immediate result of Theorem 3.3.

Corollary 3.3. Let A be an IFG of a group G such that the index of
A s 2, then A € IFNG(G).

It is well-known in group theory that of # is a homomorphism of a
group G into itself whose kernal is NV, then # induces a homomorphism

from G/N into itself. Now we derive an analog of the following result.

Theorem 3.4. Let A be an IFNG of a group G and let # be an ho-
momorphism of G into itself such that (G 4) = G4. Then 6 induces a
homomorphism 6§ of the intuitionistic fuzzy cosets of A defined as follows

0(Az) = Ab(z) for each = € G.

Proof. Suppose 7,y € G such that Az = Ay. Then Az(z) = Ay(z) and
Az(y) = Ay(y). Thus A(e) = A(zy™!) = A(yz™Y). So zy~,yz~! €
Ga. Since (G4) = G4, 0(zy™'), 0(yz™!) € G4. Then

A(B(zy™) = A(0(yz™")) = Ale).  (4)
Let g € G. Then
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HAo(x (9) = nalgb(z)” )
= pa(gf(z™1)) (Since § is a homomorphism)

Do(y)8(z1)
D) A pa(@(y)0(z™))  (Since A € IFG(G))
Y

YA pa(@(yz=1)) (Since 6 is a homomorphism)

)

(96(
= pal(gf(y~
> palgb(y™
= pa(g0(y~

)
(

= Bao(y)(9) A pale) (By (4))
= 1 a6(4)(9) (By Result 1.A)
and
Vao)(9) = va(90(z) ™) = valgb(z™")) = valgbly~1)8(y)0(z ™))
<valgfly™)) Vval@(y)o(a™") = valghly™)) vV rva(@yz~1))
= Vag(y)(9) V va(e) = Vaoy)(9)-
By the similar arguments, we have
1a0(y)(9) = Hao(z)(9) and vag(y)(9) < Vap()(9)-
Thus Af(z) = Ab(y). So 0 is well-defined.
Now let z,y € G. Then
0(Az * Ay) = 6(Azy) (By Result 3.B)
= Af(zy) (By the definition of 9)
= AfO(x)0(y) (Since 6 is a homomorphism)
= Af(z) * A6(y) (By Result 3.B)
= G(Az) * (Ay). (By the definition of )

Hence 6 is a homomorphism. This completes the proof. B

Corollary 3.4-1. In the same hypothesis as in Theorem 3.4, if 8 is an

automorphism and G is finite, then 6 is an automorphism.

Proof. Since G has finite order, it is easy to see that 8 has finite order.
Suppose that # has order k. Then 6% = idg, where idg denotes the
identity mapping. Let x,y € G such that (Az) = §(Ay). Then, by the
definition of 8,

Ab(z) = Ab(y).
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Since 6% = idg, 6%(z) = z and 6%(y) = y. Thus Az = Af*(z) =
AbF(y) = Ay.

So 8 is injective. Hence 6 is an automorphism. B

Corollary 3.4-2. In the same hypothesis as in Theorem 3.4, if § is an

automorphism and G4 = (e), then 6 is an automorphism.

Proof. Let z,y € G such that 0(z) = 0(y). Then Af(x) = Ab(y), i.e.,
0(Az) = 0(Ay). Since 0 is injective, Az = Ay. Then Az(y) = Ay(y).
Thus A(yz™!) = A(e). So yz~! € G4. Since G4 = (e), yz~! = e. Thus

x =y. So § is injective. Hence 6 is an automorphism. M

The motivation of the following result stems from the standard theo-
rem in group theory that if 6 is an automorphism of G and NN is a normal
subgroup of G such that N ¢ N, then 6 induces an automorphism of
the quotient group G/N into itself.

Remark 3.5. In Theorem 3.4, we have assumed A to be intuitionistic
fuzzy normal instead of assuming only that A is an intuitionistic fuzzy
subgroup. This has been done to ensure that the law of composition
of intuitionistic fuzzy cosets is well-defined, and this fact is used in the
proof of Theorem 3.4 to show that 8 is a homomorphism(refer to Result
3.B). However, it is clear from the proof that to show 8 is well-defined

it is not necessary to assume A to be intuitionistic fuzzy normal.

Theorem 3.6. Let A be an IFNG of a group G and let # be an au-
tomorphism of G such that A% = A(recall the definition of A? given by
Definition 2.1). Then 6 induces an automorphism 6 of G/A defined as
follows : for each z € G,

0(Az) = Ab(x).
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Proof. Let z,y € G such that Az = Ay. We show that §(Az) = 6(Ay),
ie., Ab(z)(g) = Ab(y)(g) for each g € G. Let g € G. Since 6 is an
automorphism of G, there exists a ¢* € G such that 8(g*) = ¢. Since
Az = Ay, Az(g*) = Ay(g*), ie., A(g*z™!) = A(g*y™!). Since A% = A,
A(g*z~1) = A%(g*y~1). By Definition 2.1, A(8(g*z~1)) = A(0(g*y™1)).
Since 0 is an automorphism of G, A(8(g*)0(z~1)) = A(0(g*)0(y1)).
Thus A(g0(z 1)) = A(g8(y™), i.e., 49(z)(g) = A0(y)(g). So B(Az) =
0(Ay). Hence 6 is well-defined. The proof of the fact that 0 is a ho-
momorphism is analogous to the corresponding part of the proof of
Theorem 3.4, and thus we omit the details. Now suppose Az € Kerf
for each z € G. Then §(Az) = Af(z) = Ae. Let ¢ € G. Then
AB(z)(6(g)) = Aeb(g), i.e., A(6(g)0(z~1)) = AH(g). Thus Ab(gz~1) =
Ab(g), i.e., A%(gz~1) = A%g). Since A% = A, A(gz™') = A(g). Then
Az(g) = Ae(g). Thus Az = Ae, i.e., Kerf = {Ae}. So § is injective.
Hence 6 is an automorphism of G/A. This completes the proof.

Theorem 3.7. Let A be an IFG of a finite group G and let z,y € G.
Then G4, = Gay if and only if Az = Ay.

Proof. By Result 1.B and Lemma 2.10, G4 is a subgroup of G and
Ga={ze€G: Az = Ae}.

(=): Suppose G4, = Ga, for any z,y € G. Then zy~! € G4. Thus
Azy~! = Ae. Let g € G. Then Azy~1(g) = Ae(g), ie., Al(gyr™1) =

A(g). Repacing g by gy~1
get that

, which is also an arbitrary element of G, we

A(gz™1) = A(gy™!) for each y € G.
Thus Az(g) = Ay(g) for each y € G. So Az = Ay.

(<=): Suppose Az = Ay for any =,y € G and let g € G. Then

Az(g) = Aylg), ie., A(gz™!) = A(gy™).
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In particular, A(yz™!) = A(yy~!) = A(e). Thus yz=! € Ga. So
Gaz = Gay. This completes the proof. B

Remark 3.8. Theorem 3.6 shows that there is a one-to-one correspon-
dence between the (right) cosets of G4 in G and the intuitionistic fuzzy
cosets of A, given by the mapping

x « Az for each z € G.
Hence we see that the subgroup G 4 plays a key role in the analysis of

intuitionistic fuzzy cosets.
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