• Title/Summary/Keyword: abbreviation disambiguation

Search Result 5, Processing Time 0.018 seconds

Abbreviation Disambiguation using Topic Modeling (토픽모델링을 이용한 약어 중의성 해소)

  • Woon-Kyo Lee;Ja-Hee Kim;Junki Yang
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.35-44
    • /
    • 2023
  • In recent, there are many research cases that analyze trends or research trends with text analysis. When collecting documents by searching for keywords in abbreviations for data analysis, it is necessary to disambiguate abbreviations. In many studies, documents are classified by hand-work reading the data one by one to find the data necessary for the study. Most of the studies to disambiguate abbreviations are studies that clarify the meaning of words and use supervised learning. The previous method to disambiguate abbreviation is not suitable for classification studies of documents looking for research data from abbreviation search documents, and related studies are also insufficient. This paper proposes a method of semi-automatically classifying documents collected by abbreviations by going topic modeling with Non-Negative Matrix Factorization, an unsupervised learning method, in the data pre-processing step. To verify the proposed method, papers were collected from academic DB with the abbreviation 'MSA'. The proposed method found 316 papers related to Micro Services Architecture in 1,401 papers. The document classification accuracy of the proposed method was measured at 92.36%. It is expected that the proposed method can reduce the researcher's time and cost due to hand work.

Web-based disambiguation of English Abbreviation for Korean Term (웹 검색을 이용한 한글대역어에 대한 영어약어의 중의성 해소)

  • Koo Hee-Kwan;Jung Han-Min;Kang In-Su;Sung Won-Kyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.611-614
    • /
    • 2006
  • 특정 신문은 해당 도메인의 언어자원을 구축하는데 필요한 자원이며, 한글과 영어의 괄호를 통해 표현되는 대역어구는 다국어 정보로 언어자원 구축에 이용된다. 그러나, 실제로 신문에서 사용되는 한영대역어의 구성은 한글대역어와 영어약어로 구성된 비율이 80%이상을 보인다. 신문을 대상으로 대역어사전 등을 구축하기 위해서는, 영어양어의 완전한 형태인 영어비약어 정보가 필요하다. 본 논문은 영어비약어 정보를 획득하기 웹검색을 통해 영어비약어를 획득하고, 영어약어를 이용해 영어약어와 영어비약어의 관계를 이용하는 방법을 제안한다.

  • PDF

Name Disambiguation using Cycle Detection Algorithm Based on Social Networks (사회망 기반 순환 탐지 기법을 이용한 저자명 명확화 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Jeong, Ha-Na;Choi, Joong-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.306-319
    • /
    • 2009
  • A name is a key feature for distinguishing people, but we often fail to discriminate people because an author may have multiple names or multiple authors may share the same name. Such name ambiguity problems affect the performance of document retrieval, web search and database integration. Especially, in bibliography information, a number of errors may be included since there are different authors with the same name or an author name may be misspelled or represented with an abbreviation. For solving these problems, it is necessary to disambiguate the names inputted into the database. In this paper, we propose a method to solve the name ambiguity by using social networks constructed based on the relations between authors. We evaluated the effectiveness of the proposed system based on DBLP data that offer computer science bibliographic information.

Identifying Optimum Features for Abbreviation Disambiguation in Biomedical Domain (생의학 도메인에서 약어 중의성 해결을 위한 최적 자질의 규명)

  • Lim, Ho-Gun;Seo, Hee-Cheol;Kim, Seon-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.173-180
    • /
    • 2004
  • 생의학 도메인에서 약어 중의성 해결이란 생의학 문서에 나타난 약어의 원래 형태(long form)를 판별하는 작업이다. 본 논문은 생의학 도메인에서 약어 중의성 해결에 적합한 자질들을 실험적으로 탐색하는데 목적이 있다. 이를 위해서 약어 중의성 해결에 사용할 문맥을 전역 문맥(topical context)과 지역 문맥(local context)으로 구분하고, 각각의 문맥에서 스테밍(stemming), 불용어 제거, 품사 부착 등의 과정을 통해서 다양한 자질들을 고려하도록 한다. 생의학 도메인에서 약어 중의성 해결을 위한 실험 자료의 부족을 해결하기 위해서, 학습 자료와 평가 자료를 자동으로 구축했으며, 평가를 위한 약어로는 기존 연구에서 사용된 두 가지 약어 목록을 사용했다. 또한 단순 베이지언 모델(Naive Bayesian Model)을 이용해서 각 자질들의 유용성을 평가하였다 실험 결과, 전역 문맥이 지역 문맥보다 더 좋은 성능을 보였으며, 전역 문맥에서는 불용어만을 제거한 경우가 각각의 평가 자료에서 94.2%와 96.2%로 가장 좋은 결과를 보였으며, 전역 문맥과 지역 문맥을 함께 사용하는 경우에 각각의 평가 자료에서 1.8%와 0.3%의 성능 향상이 있었다.

  • PDF

Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation (의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소)

  • Kim, Seonho;Yoon, Juntae;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.652-665
    • /
    • 2014
  • Many important terminologies in biomedical text are expressed as abbreviations or acronyms. We newly suggest a semantic link topic model based on the concepts of topic and dependency link to disambiguate biomedical abbreviations and cluster long form variants of abbreviations which refer to the same senses. This model is a generative model inspired by the latent Dirichlet allocation (LDA) topic model, in which each document is viewed as a mixture of topics, with each topic characterized by a distribution over words. Thus, words of a document are generated from a hidden topic structure of a document and the topic structure is inferred from observable word sequences of document collections. In this study, we allow two distinct word generation to incorporate semantic dependencies between words, particularly between expansions (long forms) of abbreviations and their sentential co-occurring words. Besides topic information, the semantic dependency between words is defined as a link and a new random parameter for the link presence is assigned to each word. As a result, the most probable expansions with respect to abbreviations of a given abstract are decided by word-topic distribution, document-topic distribution, and word-link distribution estimated from document collection though the semantic dependency link topic model. The abstracts retrieved from the MEDLINE Entrez interface by the query relating 22 abbreviations and their 186 expansions were used as a data set. The link topic model correctly predicted expansions of abbreviations with the accuracy of 98.30%.