• Title/Summary/Keyword: abaqus

Search Result 1,403, Processing Time 0.031 seconds

생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션 (Capture Simulation for Space Objects Using Biomimetic Space Nets)

  • 장미;신현철;심창훈;박재상;조해성
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.24-34
    • /
    • 2022
  • 본 연구에서는 우주 그물의 우주 물체 포획 성능을 향상시키기 위하여 충격 흡수의 이점을 가지는 거미집 구조의 생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션을 수행하였다. 포획 시뮬레이션은 비선형 구조 동역학 해석 프로그램인 ABAQUS를 이용하여 수행하였다. 우주 물체는 12U 크기의 CubeSat을 강체로 모델링하였다. 거미집 구조의 우주 그물은 대각선 길이가 2.828 m이며, 탄성보 요소를 이용하여 구현하였다. 동일 중량의 정사각형 우주 그물의 포획 시뮬레이션 결과와 비교하여 생체 모방 우주 그물의 포획의 우수성을 확인하였다. 또한, 거미집 구조의 우주 그물을 이용하여 우호적 및 비우호적으로 운동하는 우주 물체를 포획하는 수치 시뮬레이션을 수행하였으며, 우주 물체의 포획 성공 및 실패 사례를 조사하였다.

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Web strain based prediction of web distortion influence on the elastic LTB limiting length

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.271-278
    • /
    • 2022
  • Buckling is one of the most critical phoneme in the design of steel structures. Lateral torsional buckling (LTB) is particularly significant for slender beams generally subjected to loading in plane. The web distortion effects on LTB are not addressed explicitly in standards for flexural design of steel I-section members. Hence, the present study is focused to predict the influence of the web distortion on the elastic (Lr) limiting lengths given in American Institute of Steel Construction (AISC) code for the lateral torsional buckling (LTB) behavior of steel beams due to no provision in the code for consideration of web distortion. For this aim, the W44x335 beam is adopted in the buckling analysis carried out by the ABAQUS finite element (FE) program since it is one of the most critical sections in terms of lateral torsional buckling (LTB). The strain results at mid-height of the web at mid-span of the beam are taken into account as the monitoring parameters. The web strain results are found to be relatively greater than the yield strain value when L/Lr is equal to 1.0. In other words, the ratio of L/Lr is estimated from the numerical analysis to be about 1.5 when the beam reaches its first yielding at mid-span of the beam at mid-height of the section. Due to the effect of web distortion, the elastic limiting length (Lr) from the numerical analysis is obtained to be considered as greater than the calculated length from the code formulation. It is suggested that the formulations of the limiting length proposed in the code can be corrected considering the influence of the web distortion. This correction can be a modification factor or a shape factor that reduces sectional slenderness for the LTB formulation in the code.

이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석 (Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.309-316
    • /
    • 2022
  • 이 논문에서는 이동하는 질량체의 연직 방향에 대한 관성 효과를 고려하여 보의 진동을 해석할 수 있는 유한요소해석 방법을 제안한다. 제안하는 방법은 정밀한 상호작용 해석을 요하지 않는 경우에 계산의 효율성을 높이는 방법으로서, 이동하는 질량체의 관성 효과를 운동방정식에 연계시키고 질량체와 보의 상호작용력은 외부 하중으로만 고려한다. 범용 유한요소해석 소프트웨어인 Abaqus를 이용하여 시간 영역 해석을 수행하고 보의 절점과 이동하는 강체 질량의 절점 변위를 다지점 구속조건으로 연계하여 해석하는 방법을 제시하였다. 기존 해석적 방법에 의한 해와 비교하여 제안하는 방법을 검증하고 보행하중 모델을 이용한 이동 보행 하중해석에서 보행자의 질량 효과를 살펴보기 위한 간단한 연속 보 모델에 대한 해석 결과를 제시하였다.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

고온 고압 응력부식균열 개시 시험용 디스크 시편의 응력과 변형에 대한 유한요소 해석 (Finite Element Analysis of Stress and Strain Distribution on Thin Disk Specimen for SCC Initiation Test in High Temperature and Pressure Environment)

  • 김태영;김성우;김동진;김상태
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.44-54
    • /
    • 2023
  • The rupture disk corrosion test (RDCT) method was recently developed to evaluate stress corrosion cracking (SCC) and was found to have great potential for the real-time detection of SCC initiation in a high temperature and pressure environment, simulating the primary water coolant of pressurized water reactors. However, it is difficult to directly measure the stress applied to a disk specimen, which is an essential factor in SCC initiation. In this work, finite element analysis (FEA) was performed using ABAQUSTM to calculate the stress and deformation of a disk specimen. To determine the best mesh design for a thin disk specimen, hexahedron, hex-dominated, and tetrahedron models were used in FEA. All models revealed similar dome-shaped deformation behavior of the disk specimen. However, there was a considerable difference in stress distribution in the disk specimens. In the hex-dominated model, the applied stress was calculated to be the maximum at the dome center, whereas the stress was calculated to be the maximum at the dome edge in the hexahedron and tetrahedron models. From a comparison of the FEA results with deformation behavior and SCC location on the disk specimen after RDCT, the most proper FE model was found to be the tetrahedron model.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Sakir Yazman;Mohammed Alsdudi;Lokman Gemi;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.217-238
    • /
    • 2023
  • In this study, a parametric study was performed considering material properties of concrete, material properties of steel, the number of longitudinal reinforcement (reinforcement ratio), CFRP ply orientations, a number of layers as variables by using ABAQUS. Firstly, the parameters used in the Hashin failure criteria were verified using four coupon tests of CFRP. Secondly, the numerical models of the beams strengthened by CFRP were verified using five experimental data. Finally, eighty numerical models and eighty analytic calculations were developed to investigate the effects of the aforementioned variables. The results revealed that in the case of using fibrous polymer to prevent shear failure, the variables related to reinforced concrete significantly affected the behavior of specimens, whereas the variables related to CFRP composite have a slight effect on the behavior of the specimens. As a result of numerical analysis, while the increase in the longitudinal tensile and compression reinforcement, load bearing capacity increases between 23.6%-70.7% and 5.6%-12.2%, respectively. Increase in compressive strength (29 MPa to 35 MPa) leads to a slight increase in the load-carrying capacity of the specimens between 4.6% and 7.2%. However, the decrease in the compressive strength (29 MPa to 20 MPa) significantly affected (between 6.4% and 8.1% decrease observed) the behavior of the specimens. As the yield strength increases or decreases, the capacity of specimens increase approximately 27.1% or decrease 12.1%. The effects of CFRP ply orientation results have been obtained as a negligible well approximately 3.7% difference. An increasing number of CFRP layers leads to almost no effect (approximately 2.8%) on the behavior of the specimen. Finally, according to the numerical analysis, the ductility values obtained between 4.0 and 6.9 indicate that the beams have sufficient ductility capacity.