• Title/Summary/Keyword: a-Si%3AH

Search Result 81, Processing Time 0.026 seconds

Electrochemical Properties of Sub-micron Size Si Anode Materials Distributed by Wet Sedimentation Method (습식 분급으로 입도 조절된 서브 마이크론 크기의 Si 음극활물질의 전기화학적 특성 분석)

  • Jin-Seong Seo;Hyun-Su Kim;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.39-44
    • /
    • 2023
  • In this study, the particle size of Si polycrystals was controlled through wet-sedimentation method, and changes in the capacity and cyclic characteristics of the Si anode material according to the particle size were observed. After wet-sedimentation of Si particles pulverized by a vibration mill, the non-uniform particle distribution of Si was uniformly controlled. The d50 of a sample in which Si was sedimented for 24 hours decreased to 0.50 ㎛. As a result of the electrochemical characteristic analysis, the Rct value representing the resistance in the electrode was significantly reduced due to the decrease in particle size. The unclassified Si sample exhibited a discharge capacity of 2,869 mAh/g in the first cycle, and decreased to 85.7 mAh/g after 100 cycles. The sample in which Si was classified for 24 hours showed a capacity of 3,394 mAh/g initially, and maintained a capacity of 1,726 mAh/g after 100 cycles. As the size of the Si particles decreased, the discharge capacity increased and the cycle life was also increased.

Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method (기계적 합금화법에 의한 실리콘계 복합물질의 전지전극특성)

  • Lee, Churl-Kyoung;Lee, Jong-Ho;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.

Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning (전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능)

  • Youn, Jae Woong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.439-445
    • /
    • 2022
  • In this study, Silicon and petroleum pitch were coated on the surface of Si/C fiber manufactured using electrospinning to improve the electrochemical performances. SiO2/PAN fiber was prepared by electrospinning with TEOS and PAN at various ratios dissolved in DMF. The characteristics of carbonization, reduction, and pitch coating processes were investigated for the optimal process of the pitch coated Si/C fiber anode composite. Anode composite prepared with TEOS/PAN = 4/6 (CR-46) after carbonization and reduction process has a capacity of 657 mAh/g. To improve capacity and stability, Si powder and PFO pitch were coated at the surface of CR-46. When the pitch composition was fixed at 10 wt%, it was found that the capacity increased as the weight ratio of silicon increased, but the stability decreased. The pitch coated Si/C fiber composite with 10 wt% silicon has high capacity of 982.4 mAh/g and capacity retention of 86.1%. In the test to evaluate rate performance, the rate capability was 80.2% (5C/0.1C).

Influence of Shell on the Electrochemical Properties of Si Nanoparticle (Si 나노입자에서 shell이 전기화학적 특성에 미치는 영향)

  • Lee, Jeong-eun;Koo, Jeong-boon;Jang, Bo-yun;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$. C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries (리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더)

  • Song, Danoh;Lee, Seung Hyun;Kim, Kyuman;Ryou, Myung-Hyun;Park, Won Ho;Lee, Yong Min
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.674-680
    • /
    • 2015
  • A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight = ~10,945), the coating slurry was then prepared and Si anode was fabricated. For the control system, Si anode based on polyvinylidene fluoride (PVDF, molecular weight = ~350,000) having the same constituent ratio was prepared. During precycling, PI polymeric binder revealed much improved discharge capacity ($2,167mAh\;g^{-1}$) compared to that of using PVDF polymeric binder ($1,740mAh\;g^{-1}$), while the Coulombic efficiency of two systems were similar. PI polymeric binder improved the cycle retention ability during cycles compared to that of using PVDF, which is attributed to an improved adhesion property inside Si anode diminishing the dimensional stress during Si volume changes. The adhesion property of each polymeric binder in Si anode was confirmed by surface and interfacial cutting analysis system (SAICAS) (Si anode based on PI polymeric binder = $0.217kN\;m^{-1}$ and Si anode based on PVDF polymeric binder = $0.185kN\;m^{-1}$).

Preparation and Characteristics of Core-Shell Structure with Nano Si/Graphite Nanosheets Hybrid Layers Coated on Spherical Natural Graphite as Anode Material for Lithium-ion Batteries

  • Kwon, Hae-Jun;Son, Jong-In;Lee, Sung-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • Silicon (Si) is recognized as a promising anode material for high-energy-density lithium-ion batteries. However, under a condition of electrode comparable to commercial graphite anodes with low binder content and a high electrode density, the practical use of Si is limited due to the huge volume change associated with Si-Li alloying/de-alloying. Here, we report a novel core-shell composite, having a reversible capacity of ~ 500 mAh g-1, by forming a shell composed of a mixture of nano-Si, graphite nanosheets and a pitch carbon on a spherical natural graphite particle. The electrochemical measurements are performed using electrodes with 2 wt % styrene butadiene rubber (SBR) and 2 wt.% carboxymethyl cellulose (CMC) binder in an electrode density of ~ 1.6 g cm-3. The core-shell composites having the reversible capacity of 478 mAh g-1 shows the outstanding capacity retention of 99% after 100 cycles with the initial coulombic efficiency of 90%. The heterostructure of core-shell composites appears to be very effective in buffering the volume change of Si during cycling.

Electrochemical Behavior of Si/Cu/Graphite Composite Anode for Lithium Secondary Battery (리튬이차전지용 Si/Cu/Graphite 복합체 음극의 전기화학적 거동)

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.162-166
    • /
    • 2009
  • The carbon-coated Si/Cu powders were synthesized by mechanical ball-milling and hydrocarbon gas decomposition methods at high temperature. The carbon-coated Si/Cu powder was used as anode for lithium secondary battery and its electrochemical behavior was investigated. In addition, the carbon-coated Si/Cu/graphite composite anode material was prepared using natural graphite powder and their electrochemical characteristics were compared with natural graphite anode. The specific capacity of carbon-coated Si/Cu anode increased to the initial 10 cycles. The carbon-coated Si/Cu/graphite composite anode exhibited the reversible specific capacity of 450mAh/g and the first cycle efficiency of 81.3% at $0.25mA/cm^2$. The cycling performance of the composite anode was similar to that of pure graphite anode except the reversible specific capacity value.

Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode

  • Choi, Hongsuk;Kim, Subin;Song, Hayong;Suh, Seokho;Kim, Hyeong-Jin;Eom, KwangSup
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.249-255
    • /
    • 2021
  • In this work, we proposed a facile method to fabricate the three-dimensional porous copper current collector (3D Cu CC) for a Si-dominant anode in a Li-ion battery (LiB). The 3D Cu CC was prepared by combining chemical etching and thermal reduction from a planar copper foil. It had a porous layer employing micro-sized Cu balls with a large surface area. In particular, it had strengthened attachment of Si-dominant active material on the CC compared to a planar 2D copper foil. Moreover, the increased contact area between a Si-dominant active material and the 3D Cu could minimize contact loss of active materials from a CC. As a result of a battery test, Si-dominant active materials on 3D Cu showed higher cyclic performance and rate-capability than those on a conventional planar copper foil. Specifically, the Si electrode employing 3D Cu exhibited an areal capacity of 0.9 mAh cm-2 at the 300th cycles (@ 1.0 mA cm-2), which was 5.6 times higher than that on the 2D copper foil (0.16 mAh cm-2).