• Title/Summary/Keyword: a tuning

Search Result 2,823, Processing Time 0.029 seconds

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

A Novel Self-tuning Algorithm Suitable for FLCs Utilizing Dedicated Hardwares (전용 하드웨어로 구성한 FLC에 적합한 새로운 자기동조 알고리즘)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.17-27
    • /
    • 1996
  • More fuzzy hardware are expected to be utilized in the future to construct fuzzy logic controllers (FLCs). It is hard to find an existing fuzzy hardware which is adopting advanced functions such as self-tuning algorithm in addition to the conventional inference calculation. That is mainly because conventional self-tuning algorithms designed to implement with some hardware circuits is required for fuzzy hardwares to have self-tuning capability. As a first step toward the feature, a novel self-tuning algorithm is proposed in this paper. Based on the search method, the main idea of the proposed algorithm is to detemine valid ranges of input variables of an FLC in order to maximize performance indices fo the control system. The performance indices are so ismple as to be realized by hardware circuit. in dadditon to the conventional scaling-factor adjustment, the algorithm adjusts offset values as well, which, in effect, modifies fuzzy rules of the FLC. To justify the performance of the proposed algorithm, a simulation study is executed.

  • PDF

Measurement of Liquid Density using Tuning Fork (튜닝포크를 이용한 액체밀도의 계측)

  • Kim, Choong-Hyun;Lee, Yong-Bok;Lee, Sung-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • A sensor using quartz toning fork is presented for measuring liquid density. It consists of a PZT plate as an actuator for piezoelectric excitation and a quartz tuning fork as a sensor for resonant frequency detection. The resonant frequency is determined from the sensing voltage measured in tuning fork when the excitation frequencies of PZT actuator are swept around the resonant frequencies of tuning fork. The resonant frequency determined the liquid density. The density values of three kinds of organic solvents are measured and compared with the standard values. The experimental results are in agreement with the standard values and the maximum standard deviation is less than 9%.

Implementation of a Pole-Placement Self-Tuning Adaptive Controller for SCARA Robot Using TMS320C5X Chip (TMS320C5X칩을 사용한 스카라 로봇의 극점 배치 자기동조 적응제어기의 실현)

  • 배길호;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.754-758
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS320C50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator, In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters we determined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

An optimal scaling gain tuning method for designing a fuzzy logic controller (퍼지로직제어기를 설계하기 위한 최적 비율 이득 조정방법)

  • Shin, Hyunseok;Shim, Hansoo;Kwon, Cheol;Kang, Hyungjin;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.192-194
    • /
    • 1996
  • This paper propose an optimal scaling gain tuning method of the fuzzy PI controller using Genetic Algorithm(GA). Scaling gains can reflect the control resolution and fuzziness of input/output variables. By the scaling gain method, the design of a fuzzy logic controller(FLC) can be simplified without affecting the system performance in comparison with multi-decision table method. In designing a fuzzy logic controller, the analytic approach method for the optimization is unavailable. Therefore GA is excellent optimization algorithms for scaling gain tuning. Using this optimal scaling gain tuning method, a good performance can be achieved both in transient and steady state.

  • PDF

The Study of Servo-Parameter Tuning Technique for 6-Axes Articulated Robot Manipulator in Consideration of Dynamic Characteristics (동적 특성을 고려한 6축 로봇의 서보 파라미터 튜닝에 관한 연구)

  • Chung, W.J.;Kim, H.G.;Lee, C.M.;Hong, D.S.;Park, S.G.;Seo, Y.G.;Lee, G.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • This paper presents a new experimental Servo-Parameter tuning technique for a 6-axes articulated robot manipulator, especially considering robot's dynamics. First of all, investigation for proportional gain of velocity control loop by using a Dynamic Signal Analyzer(DSA) is performed. Using the FUNCTION characteristic of DSA based on the Bode plot, the Bode plot of open loop transfer function can be obtained. In turn, the integral gain of a servo controller can be found out by using the integration time constant extracted from the Bode plot of open loop transfer function. In the meanwhile, the positional gain of the servo controller can be obtained by using the Bode plot of the closed loop transfer function. Using the experimental gain tuning technique proposed in this paper, the testing linear motion of DR6-II robot has been shown to be more accurate rather than the motion with a conventional(empirical) gain tuning technique in Doosan Mecatec Co., Ltd., by improving the dynamic response of the robot as well as synchronizing each joint velocity according to the positional command of an end-effector.

Design of multivariable self tuning PID controllers (다변수 자기동조 PID 제어기의 설계)

  • 조원철;전기준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.66-77
    • /
    • 1997
  • This paper presents an automatic tuning method for parameters of a multivaiable self-tuning velocity-type PID controller which adapts to changes in the system parameters with time delays and noises. The velocity-type PID control structure is determined in the process of minimizing the variance of the auxiliarly output, and self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optiminzing the design parameters of the controller. The proposed PID type multivariable self-tuning method is simple andeffective compared with other esisting multivariable self-tuning methods. Computer simulation has shown that the proposed algorithm is beter than the trial-and-error method in the tracking performance.

  • PDF

System identification method for the auto-tuning of power plant control system with time delay (시간지연을 가진 발전소 제어시스템의 자동동조를 위한 System identification 방법)

  • 윤명현;신창훈;박익수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1008-1011
    • /
    • 1996
  • Most control systems of power plants are using classical PID controllers for their process control. In order to get the desired control performances, the correct tuning of PID controllers is very important. Sometimes, it is necessary to retune PID controllers after the change of system operating condition and system design change, etc. Commercial auto-tuning controllers such as relay feedback controller can be used for this purpose. However, using these controllers to the safety-critical systems of nuclear power plants may be cause of unsafe operation, because they are using test signals for tuning. A new system identification auto-tuning method without using test signal has been developed in this paper. This method uses process input/output signals for system identification of unknown control process. From the model information of control process which was obtained from system identification approach, the optimal PID parameters can be calculated. The method can be used in the safety-critical systems because it is not using test signals during system modeling process.

  • PDF

Resonant Frequency Tuning of Torsional Microscanner using MEMS actuator (MEMS 구동기를 이용한 마이크로 주사거울의 고유주파수 튜닝)

  • Lee, Jae-Ik;Park, Sunwoo;Kim, Jongbaeg
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • In this paper, we present a novel approach for tuning the resonant frequency of torsionally driven vertical comb actuators. The tuning unit composed of thermal actuator, scissor mechanism and V-shape shaft enables continuous and reversible resonant frequency tuning. The proposed method is based on the stiffness alteration of the V-shape shaft. It is experimentally verified that the resonant frequency of the torsional microscanner is shifted up to 1.59 kHz from 1.51 kHz showing the maximum tuning ratio of 5.29%.

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.