• Title/Summary/Keyword: a sparse matrix

Search Result 231, Processing Time 0.027 seconds

Study on Principal Sentiment Analysis of Social Data (소셜 데이터의 주된 감성분석에 대한 연구)

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.

Nonlinear Filter for Orbit Determination (궤도결정을 위한 비선형 필터)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Orbit determination problems have been interest of many researchers for long time. Due to the high nonlinearity of the equation of motion and the measurement model, it is necessary to linearize the both equations. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the extended Kalman filter update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the extended Kalman filter update mechanism. This filter based on the DQMOM and the EKF update is applied to the orbit determination problem with appropriate modification to mitigate the filter smugness. Unlike the extended Kalman filter, the hybrid filter based on the DQMOM and the EKF update does not require the burdensome evaluation of the Jacobian matrix and Gaussian assumption for the system, and can still provide more accurate estimations of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the hybrid filter based on the DQMOM and the EKF update make it a promising alternative to the extended Kalman filter for orbit estimation problems.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Novel construction of quasi-cyclic low-density parity-check codes with variable code rates for cloud data storage systems

  • Vairaperumal Bhuvaneshwari;Chandrapragasam Tharini
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.404-417
    • /
    • 2023
  • This paper proposed a novel method for constructing quasi-cyclic low-density parity-check (QC-LDPC) codes of medium to high code rates that can be applied in cloud data storage systems, requiring better error correction capabilities. The novelty of this method lies in the construction of sparse base matrices, using a girth greater than 4 that can then be expanded with a lift factor to produce high code rate QC-LDPC codes. Investigations revealed that the proposed large-sized QC-LDPC codes with high code rates displayed low encoding complexities and provided a low bit error rate (BER) of 10-10 at 3.5 dB Eb/N0 than conventional LDPC codes, which showed a BER of 10-7 at 3 dB Eb/N0. Subsequently, implementation of the proposed QC-LDPC code in a softwaredefined radio, using the NI USRP 2920 hardware platform, was conducted. As a result, a BER of 10-6 at 4.2 dB Eb/N0 was achieved. Then, the performance of the proposed codes based on their encoding-decoding speeds and storage overhead was investigated when applied to a cloud data storage (GCP). Our results revealed that the proposed codes required much less time for encoding and decoding (of data files having a 10 MB size) and produced less storage overhead than the conventional LDPC and Reed-Solomon codes.

A Wavefront Array Processor Utilizing a Recursion Equation for ME/MC in the frequency Domain (주파수 영역에서의 움직임 예측 및 보상을 위한 재귀 방정식을 이용한 웨이브프런트 어레이 프로세서)

  • Lee, Joo-Heung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.1000-1010
    • /
    • 2006
  • This paper proposes a new architecture for DCT-based motion estimation and compensation. Previous methods do riot take sufficient advantage of the sparseness of 2-D DCT coefficients to reduce execution time. We first derive a recursion equation to perform DCT domain motion estimation more efficiently; we then use it to develop a wavefront array processor (WAP) consisting of processing elements. In addition, we show that the recursion equation enables motion predicted images with different frequency bands, for example, from the images with low frequency components to the images with low and high frequency components. The wavefront way Processor can reconfigure to different motion estimation algorithms, such as logarithmic search and three step search, without architectural modifications. These properties can be effectively used to reduce the energy required for video encoding and decoding. The proposed WAP architecture achieves a significant reduction in computational complexity and processing time. It is also shown that the motion estimation algorithm in the transform domain using SAD (Sum of Absolute Differences) matching criterion maximizes PSNR and the compression ratio for the practical video coding applications when compared to tile motion estimation algorithm in the spatial domain using either SAD or SSD.

Compressed Sensing Techniques for Millimeter Wave Channel Estimation (밀리미터파 채널 추정을 위한 압축 센싱 기법)

  • Han, Yonghee;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Millimeter wave (mmWave) bands are expected to improve date rate of 5G systems due to the wide available bandwidth. While severe path loss in those bands has impeded the utilization, short wavelength enables a large number of antennas packed in a compact form, which can mitigate the path loss. However, estimating the channel with a conventional scheme requires a huge training overhead, hence an efficient estimation scheme operating with a small overhead needs to be developed. The sparsity of mmWave channels caused by the limited scatterers can be exploited to reduce the overhead by utilizing compressed sensing. In this paper, we introduce compressed sensing techniques for mmWave channel estimation. First, we formulate wideband channel estimation into a sparse recovery problem. We also analyze the characteristics of random measurement matrix constructed using quantized phase shifters in terms of mutual incoherence.

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.

3D Modeling and Inversion of Magnetic Anomalies (자력이상 3차원 모델링 및 역산)

  • Cho, In-Ky;Kang, Hye-Jin;Lee, Keun-Soo;Ko, Kwang-Beom;Kim, Jong-Nam;You, Young-June;Han, Kyeong-Soo;Shin, Hong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.119-130
    • /
    • 2013
  • We developed a method for inverting magnetic data to recover the 3D susceptibility models. The major difficulty in the inversion of the potential data is the non-uniqueness and the vast computing time. The insufficient number of data compared with that of inversion blocks intensifies the non-uniqueness problem. Furthermore, there is poor depth resolution inherent in magnetic data. To overcome this non-uniqueness problem, we propose a resolution model constraint that imposes large penalty on the model parameter with good resolution; on the other hand, small penalty on the model parameter with poor resolution. Using this model constraint, the model parameter with a poor resolution can be effectively resolved. Moreover, the wavelet transform and parallel solving were introduced to save the computing time. Through the wavelet transform, a large system matrix was transformed to a sparse matrix and solved by a parallel linear equation solver. This procedure is able to enormously save the computing time for the 3D inversion of magnetic data. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and real airborne data obtained at the Geumsan area of Korea.

A MIMO LTE Precoding Codebook Based on Fast Diagonal Weighted Matrices (고속 대각 하중 행렬을 이용한 MIMO LTE 프리코딩 코드북)

  • Park, Ju-Yong;Peng, Bu Shi;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.14-26
    • /
    • 2012
  • In this paper, a fast diagonal-weighted Jacket matrices (DWJMs) is proposed to have the orthogonal architecture. We develop the successive DWJM to reduce the computational load while factorizing the large-order DWJMs into the low-order sparse matrices with the fast algorithms. The proposed DWJM is then applied to the precoding multiple-input and multiple output (MIMO) wireless communications because of its diagonal-weighted framework with element-wise inverse characteristics. Based on the properties of the DWJM, the DWJM can be used as alternative open loop cyclic delay diversity (CDD) precoding, which has recently become part of the cellular communications systems. Performance of the DWJM-based precoding system is verified for orthogonal space-time block code (OSTBC) MIMO LTE systems.

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.