• Title/Summary/Keyword: a slip ratio

Search Result 325, Processing Time 0.027 seconds

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF

Simulation of Compression Molding with Extensional & Shear Viscosity for Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 압축성형에 있어서 인장점성과 전단점성을 고려한 유동해석)

  • 조선형;김이곤
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 1997
  • In recent years, compression molding of fiber-reinforced thermoplastics has been increased in commercial aspects. During a compression molding process of composites, the flow analysis must be developed in order to accurately predict the finished part properties as a function of the molding process parameters. In this paper, a new model is presented which can be used to predict the flow under consideration of the slip of mold-composites and extensional & shear viscosity ratio M and slip parameter$\alpha$ on the mold filling parameters are discussed.

  • PDF

A development of diesel engine De-NOx system using the selective catalytic reduction method (선택적 촉매 환원법을 이용한 디젤엔진의 De-NOx 시스템 개발에 관한 연구)

  • 정경열;김재윤;오상훈;박정일;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.187-191
    • /
    • 2001
  • In the paper, an approach to the development of the selective catalytic reduction process of NOx is presented. The reduction process can be efficiently controlled using a conventional combination of feed-forward and feed-back control structures. The aim of this paper is to test and verify an approach to the SCR process which is based on an industrial pilot plant of combustion and nitric oxide formation. The systems are based on measurements of a NOx removal ratio and the fuel flow rate, and NH$_3$slip which are usually available as a part of de-NOx control system.

  • PDF

Study on the Performance Characteristics of Urea-SCR System in the ETC Test (ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구)

  • Ham, Yun-Young;Choi, Dong-Seok;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

Mechanical Propertis and Contact Damage Behavior of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 기계적 성질 및 접촉 손상 거동)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.333-338
    • /
    • 1998
  • Mechanical properties of polycrystalline{{{{ {Ti }_{3 }{SiC}_{2 } }} were investigated. Hertzian indentation test using a spher-ical indenter was used to study elastic and plastic behavior in{{{{ {Ti }_{3 }{SiC}_{2 } }} A high ratio of hardness to elastic mo-dulus indicated that mechanical properties of{{{{ {Ti }_{3 }{SiC}_{2 } }} are somehow similar to those of metals. Indentation stress-strain curve deviated from an ideal elastic limit indicating exceptional plasticity in this material. De-formation zones were formed below the contact as well as around the contact area. Intragrain slip would ac-count for high plasticity.

  • PDF

A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data (실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구)

  • 우관제;산기준일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

The flow Analysis in a Microchannel using the Lattice Boltzmann Method (격자볼츠만방법(LBM)을 이용한 마이크로채널 내의 유동해석)

  • Cho K. J.;Jeong J. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • As an alternative numerical method, the lattice Boltzmann method (LBM) is used to simulate a 2-dimensional pressure driven microchannel flow which comes from frequently in MEMS problems. The flow is assumed to be isothermal ideal gas flow. The flow field is calculated with various Knudsen numbers, pressure ratios and aspect ratios of the microchannel. The LBM can show the fundamental characteristics in microchannel flow such as velocity slip and nonlinear pressure drop.

  • PDF

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

A Development of New Vehicle Model for Yaw Rate Estimation (요각속도 추정을 위한 새로운 차량 모델의 개발)

  • Bae, Sang-Woo;Shin, Moo-Hyun;Kim, Dae-Kyun;Lee, Jang-Moo;Lee, Jae-Hyung;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF