• Title/Summary/Keyword: a robotic assembly

Search Result 62, Processing Time 0.019 seconds

A NOVEL APPROACH OF BUILDING CONSTRUCTION USING ROBOTIC TECHNOLOGY

  • Baeksuk Chu;Kyungmo Jung;Hunhee Cho;Myo-Taeg Lim;Daehie Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.31-37
    • /
    • 2011
  • Construction automation is yet to be improved since construction site still faces a lot of high risks and difficulties. This research focuses on applying robotic beam assembly system in place of construction workers. This system consists of CF (Construction Factory) structure to provide adequate working environment to robot automation. The CF structure not only gives automation environment for a robot but also houses the equipments to protect from outside effects. The robotic beam assembly system also consists of robotic bolting system and robot transport mechanism. It utilizes various tools to insert and join the bolts and nuts. Visual servoing helps precise robot motion by sensing bolt hole and tail of the bolt. ITA system helps non skilled workers to easily perform the assembly work with the robot system. The robot transport mechanism includes sliding rail and cross-wired lift. It carries the robot to a desired position for assembly work.

  • PDF

Robot-Human Task Sharing System for Assembly Process (조립 공정을 위한 로봇-사람 간 작업 공유 시스템)

  • Minwoo Na;Tae Hwa Hong;Junwan Yun;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.419-426
    • /
    • 2023
  • Assembly tasks are difficult to fully automate due to uncertain errors occurring in unstructured environments. When assembling parts such as electrical connectors, advances in grasping and assembling technology have made it possible for the robot to assemble the connectors without the aid of humans. However, some parts with tight assembly tolerances should be assembled by humans. Therefore, task sharing with human-robot interaction is emerging as an alternative. The goal of this concept is to achieve shared autonomy, which reduces the efforts of humans when carrying out repetitive tasks. In this study, a task-sharing robotic system for assembly process has been proposed to achieve shared autonomy. This system consists of two parts, one for robotic grasping and assembly, and the other for monitoring the process for robot-human task sharing. Experimental results show that robots and humans share tasks efficiently while performing assembly tasks successfully.

An Automatic Teaching Method by Vision Information for A Robotic Assembly System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kim, Jong-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • In this study, an off-line automatic teaching method using vision information for robotic assembly task is proposed. Many of industrial robots are still taught and programmed by a teaching pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and played back repetitively to perform the robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and transferred to the robot controller. This teaching process is implemented through an off-line programming(OLP) software. The OLP is developed for the robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on the assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line automatic teaching.

  • PDF

A study on the modelling and simulation of robotic assembly cells (로보틱 조립셀의 모델링 및 시뮬레이션에 관한 연구)

  • 홍지민;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.411-416
    • /
    • 1990
  • A modelling process of a robotic assembly cell and a method for analysis of the assembly cell operation through simulation are presented. An assembly cell including industrial robots is the subject of the model. The states of the assembly cell elements are taken as the state variables and the relationships between the states are described mathematically using the operators. An algorithm for the cell operation is developed from the relationships between the states and the information on the assembly task, and efficient analyses are performed by the simulation results.

  • PDF

Utilization of Vision in Off-Line Teaching for assembly robot (조립용 로봇의 오프라인 교시를 위한 영상 정보의 이용에 관한 연구)

  • 안철기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.543-548
    • /
    • 2000
  • In this study, an interactive programming method for robot in electronic part assembly task is proposed. Many of industrial robots are still taught and programmed by a teach pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and play back repetitively to perform robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and downloaded to the robot controller. This teaching process is implemented through an off-line programming software. The OLP is developed for an robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on an assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line teaching in the system.

  • PDF

Assembly sequence generation using genetic algorithm (유전자 알고리즘을 이용한 조립순서 추론)

  • 홍대선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1267-1270
    • /
    • 1997
  • An assembly sequence is considered to be optimal when it minimizes assembly cost while satisfying assembly constraints. to generate such sequences for robotic assembly, this paper proposes a method using a genetic algorithm (GA). This method denotes an assembly sequence as an individual, which is assigned a fitness related to the assembly cost. Then, a population consisting of a number of individuals evolves to the next generation through genetic operations of crossover and mutation based upon the fitness of the individuals. The population continues to repetitively evolve, and finally the fittest individual and its corresponding assembly sequence is found. Through case study for an electrical relay, the effectiveness of the proposed method is demonstrated. Also, the performance is evaluated by-comparing with those of previously presented approaches such as a neural-netowork-based method and a simulated annealing method.

  • PDF

Development of a pneumatic vibratory wrist for robotic assembly

  • Jeong, Kyu-Won;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.909-914
    • /
    • 1987
  • In this paper a pneumatic vibratory wrist with PWM controller is developed for robotic assembly. Since the vibration characteristics are critical to assembly performance, they are investigated both theoretically and experimentally. The results show that within a wide range of conditions the wrist vibration can be effectively used for precision assembly.

  • PDF

A framework for modelling and operation management of robotic assembly cells via knowledge base (지식베이스를 이용한 로보틱 조립셀의 모델링과 운영관리를 위한 프레임 워크)

  • 김대원;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.374-379
    • /
    • 1988
  • We propose a framework for modelling and operation management of robotic assembly cells via knowledge base. In the framework, each component of the cell is considered as a state variable, the relations among the state variables are stored in state transition maps(STMs) and then transformed into the form of knowledge. The assembly job tree(AJT) which includes the precedence relations and the constraints for assembly tasks is also described. Finally, an algorithm is presented to manage the cell operation.

  • PDF

A Naural Network-Based Computational Method for Generating the Optimized Robotic Assembly Sequence (자동조립에서의 신경회로망의 계산능력을 이용한 조립순서 최적화)

  • 홍대선;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1881-1897
    • /
    • 1994
  • This paper presents a neural network-based computational scheme to generate the optimized robotic assembly sequence for an assembly product consisting of a number of parts. An assembly sequence is considered to be optimal when it meets a number of conditions : it must satisfy assembly constraints, keep the stability of in-process subassemblies, and minimize assembly cost. To derive such an optimal sequence, we propose a scheme using both the Hopfield neural network and the expert system. Based upon the inferred precedence constraints and the assembly costs from the expert system, we derive the evolution equation of the network. To illustrate the suitability of the proposed scheme, a case study is presented for industrial product of an electrical relay. The result is compared with that obtained from the expert system.

Robotic welding system for sub-assembly line in ship manufacturing (로봇을 이용한 조선 소조립 용접 자동화 시스템)

  • 김진오;신정식;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.516-519
    • /
    • 1996
  • Sub-assembly in ship manufacturing is a sequence of filet joint welding of stiffeners on metal panels and the process is different depending on companies. In this paper, we introduce a new intelligent robotic system of the sub-assembly process in Samsung Heavy Industry, where one shift of 22m * 9m workspace includes one to ten panels and each panel includes up to 10 stiffeners. The inherent problems such as several hundreds of different panels, unstructured task environment and the large scale do not allow a fixed automation, but needs highly intelligent versatile automation. The robotic system is composed of four 14DOF macro-mini robots and a task recognition system. Application of this system has verified the task specification such as low temperature environment(-10.deg. C) and productivity is satisfied successfully.

  • PDF