• Title/Summary/Keyword: a real-time analysis

Search Result 6,022, Processing Time 0.034 seconds

A Study on the Calculation and Provision of Accruals-Quality by Big Data Real-Time Predictive Analysis Program

  • Shin, YeounOuk
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.

Design and Analysis of Weapon Simulator using Schedulability Analysis (스케줄링 가능성 분석을 통한 무장모의기 확장 설계 및 분석)

  • Jang, Tasksoo;Kim, Yongho;Na, Beomcheol;Park, Keunkuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.371-378
    • /
    • 2016
  • The most important things in real-time systems are that a system guarantees to meet its deadline and to operate in its predictable range. When we design a real-time system, we need to verify whether the system can meet its deadline through schedulability analysis. There are several kinds of schedulability analysis technique for fixed priority scheduling systems. But as we all know, we can't perform schedulability analysis in design time because we can't estimate upper bounds on execution time of each task. So we used a similar real-time system to estimate upper bounds on execution time for our system, and then we performed schedulability analysis and verified that our system designed can meet its deadline.

Implementation of Worst Case Execution Time Analysis Tool For Embedded Software based on XScale Processor (XScale 프로세서 기반의 임베디드 소프트웨어를 위한 최악실행시간 분석도구의 구현)

  • Park, Hyeon-Hui;Choi, Myeong-Su;Yang, Seung-Min;Choi, Yong-Hoon;Lim, Hyung-Taek
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.365-374
    • /
    • 2005
  • Schedulability analysis is necessary to build reliable embedded real-time systems. For schedulability analysis, worst-case execution time(WCET) analysis that computes upper bounds of the execution times of tasks, is required indispensably. WCET analysis is done in two phases. The first phase is high-level analysis that analyzes control flow and finds longest paths of the program. The second phase is low-level analysis that computes execution cycles of basic blocks taking into account the hardware architecture. In this thesis, we design and implement integrated WCET analysis tools. We develop the WCET analysis tools for XScale-based system called WATER(WCET Analysis Tool for Embedded Real-time system). WATER consist of high-level flow analyzer and low-level execution time analyzer. Also, We compare real measurement for execution of program with analysis result calculated by WATER.

Fine-Grain Real-Time Code Scheduling for VLIW Architecture

  • Chung, Tai M.;Hwang, Dae J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • In safety critical hard real-time systems, a timing fault may yield catastrophic results. In order to eliminate the timing faults from the fast responsive real-time control systems, it is necessary to schedule a code based on high precision timing analysis. Further, the schedulability enhancement by having multiple processors is of wide spread interest. However, although an instruction level parallel processing is quite effective to improve the schedulability of such a system, none of the real-time applications employ instruction level parallel scheduling techniques because most of the real-time scheduling models have not been designed for fine-grain execution. In this paper, we present a timing constraint model specifying high precision timing constraints, and a practical approach for constructing static schedules for a VLIW execution model. The new model and analysis can guarantee timing accuracy to within a single machine clock cycle.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

Holistic Scheduling Analysis of a CAN based Body Network System (CAN을 이용한 차체 네트웍 시스템에 대한 Holistic 스케줄링 해석)

  • 신민석;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.114-120
    • /
    • 2002
  • In a distributed real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of each real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a distributed real-time system such as shcedulability test must be performed during the system design phase. In this study, a simple application of CAN fur a vehicle body network system is formulated to apply to a holistic scheduling analysis, and the worst-case execution time (WCET) and the worst-case end-to-end response time (WCRT) are evaluated in the point of holistic system view.

Coordinates Matching in the Image Detection System For the Road Traffic Data Analysis

  • Kim, Jinman;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.4-35
    • /
    • 2001
  • Image detection system for road traffic data analysis is a real time detection system using image processing techniques to get the real-time traffic information which is used for traffic control and analysis. One of the most important functions in this system is to match the coordinates of real world and that of image on video camera. When there in no way to know the exact position of camera and it´s height from the object. If some points on the road of real world are known it is possible to calculate the coordinates of real world from image.

  • PDF

Analysis of Real-time Error for Geo/D/1/1 Model (Geo/D/1/1 모형에서의 실시간 원격 추정값의 오차 분석)

  • Yutae, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.135-138
    • /
    • 2023
  • In this paper, we study real-time error in the context of monitoring a binary information source through a delay system. To derive the average real-time error, we model the delay system as a discrete time Geo/D/1/1 queueing model. Using a discrete time three-dimensional Markov chain with finite state space, we analyze the queueing model. We also perform some numerical analysis on various system parameters: state transition probabilities of binary information source; transmission times; and transmission frequencies. When the state changes of the information source are positively correlated and negatively correlated, we investigate the relationship between transmission time and transmission frequency.

A Realtime Analytical System of Football Game

  • Min, Dae-kee
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.557-564
    • /
    • 2001
  • The objective of he study is to record the real conditions along with the soccer ball that is, each player's ball keeping time, the number football keeping, accuracy of passing to other player, direction, etc., on a real-time basis, measure them in numbers and get necessary analyzed output as much as one needs. The study consists of the following stages: (1) Record the data by drawing through Visual Interface on a real-time basis; (2) Graphic windows to display the recorded data item by item in graphic; (3) Form windows to display the individual or team scores anytime when needed; (4) Windows to display the analyzed data in visualized form. The effect of the study is threefold: (1) It inputs all the game-related data on a real-time basis, which was impossible before and shows analyzed contents during the game enabling each tea manager o use; (2) In cse of TV broadcasting or newspaper articles, it explains objectively the situations of he game to the TV viewers or readers; (3) After the game, it provides importance information on each team's playing ability and individual player's technical improvement through data analysis.

  • PDF

Reliability Based Real-time Slope Stability Assessment

  • Lee, Seung-Rae;Choi, Jung-Chan;Kim, Yun-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.427-435
    • /
    • 2008
  • A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.

  • PDF