• Title/Summary/Keyword: a piping test

Search Result 269, Processing Time 0.027 seconds

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper (강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험)

  • Choi, Song Yi;So, Gi Hwan;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.

Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2728-2745
    • /
    • 2021
  • The purpose of this study is to reduce seismic responses of an actual nuclear piping system using a tuned mass damper (TMD) device. A numerical piping model was developed and validated based on shaking table test results with actual nuclear piping. A TMD for nuclear piping was newly devised in this work. A TMD shape design suitable for nuclear piping systems was conducted, and its operating performance was verified after manufacturing. The response reduction performance of the developed TMD under earthquake loading on actual piping was investigated. Results confirmed that, on average, seismic response reduction rates of 34% in the maximum acceleration response, 41% in the root mean square acceleration response, and 57% in the spectral acceleration response were shown through the TMD application. This developed TMD operated successfully within the seismic response reduction rate of existing TMD optimum design values. Therefore, the developed TMD and dynamic interpretation help improve the nuclear piping's seismic performance.

Reproduction of Piping Failure Due to the Permeable Layer Using Centrifuge Test (원심모형실험을 통한 전석층이 존재하는 제방에서의 파이핑 현상 모사)

  • Jin, Seok-Woo;Kim, Nam-Ryong;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.1-10
    • /
    • 2011
  • This paper simulates the piping effect, found levees with large difference in coefficient of permeability within the foundation such as the Gim-po Levee, via centrifuge model test which is a model test. We have also conducted a numerical analysis under the same conditions as the centrifuge model test to compare its results. First, we decided to use the centrifuge model based on the Gim-po Levee, and the tests were executed on a model levee with pore water pressure transducers. We have found that most of the water flows through the permeable layer and causes the piping effect. Via video camera footage, we have found that the piping effect occurred at the toe of the model levee. The characteristic of pressure head distribution, obtained from the pore water pressure transducers, also proves the occurrence of the piping effect. The numerical analysis results also showed the same results as the centrifuge model test. We have simulated the piping effect via centrifuge model test and believe that the centrifuge model test is viable for various tests, predictions and evaluation of the levee problems.

Reduction of Transient Vibration on $H_2$ Piping System for Generator Cooling in a Power Plant (화력발전소 발전기 냉각용 수소배관계 과도진동 개선)

  • Yang, Kyeong-Hyeon;Kim, Sung-Hwi;Cho, Chul-Whan;Bae, Chun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.588-592
    • /
    • 2002
  • There was the transient vibration on $H_2$ piping system for cooling the generator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and exciting force from the turbine rotor by measurement and simulation test. We verified it would be changed the mode shape of the piping system by several simulation test for the structural modification of the piping system. Therefore we concluded that the change of natural vibration mode depends on deeply changing effective length of pipe and reducing supports.

  • PDF

Reduction of Transient Vibration on $H_2$ Piping System for Generator Cooling in a Power Plant (화력발전소 발전기 냉각용 수소배관계 과도진동 개선)

  • Yang Kyeong Hyeon;Kim Sung Hwi;Cho Chul Whan;Bae Chun Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.360.2-360
    • /
    • 2002
  • There was the transient vibration on $H_2$ piping system fer cooling the generator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and exciting force from the turbine rotor by measurement and simulation test. We verified it would be changed the mode shape of the piping system by several simulation test for the structural modification of the piping system. (omitted)

  • PDF

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

A Study on a Quality Characteristics of Pressure Leak Test of Process Piping for Offshore Plant (해양플랜트 프로세스 배관 Pressure Leak Test의 품질 특성에 관한 연구)

  • Park, Chang-Soo;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.429-437
    • /
    • 2018
  • The process gas piping of the offshore plant can cause a massive explosion if the gas leakage occurs during operation. For the purpose of precaution of gas leakage accident, an air pressure test is performed on the process equipment tests using a test pump as much as the power to the piping inner side, mix 99% nitrogen gas and 1% helium gas. The purpose of the air pressure test is to check the work conformity process by handling and regulation for initial piping process, assembly, installation of module, welding, center alignment of the pipes assembling flange gasket in an unrestrained free state. In this paper, the regulation of the problematic air pressure test was analyzed and the solution criteria were established. And leakage tests of existing equipment were performed applying these solution methods. As a result, it was confirmed that there was no problem.

A novel hybrid testing approach for piping systems of industrial plants

  • Bursi, Oreste S.;Abbiati, Giuseppe;Reza, Md S.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1005-1030
    • /
    • 2014
  • The need for assessing dynamic response of typical industrial piping systems subjected to seismic loading motivated the authors to apply model reduction techniques to experimental dynamic substructuring. Initially, a better insight into the dynamic response of the emulated system was provided by means of the principal component analysis. The clear understanding of reduction basis requirements paved the way for the implementation of a number of model reduction techniques aimed at extending the applicability range of the hybrid testing technique beyond its traditional scope. Therefore, several hybrid simulations were performed on a typical full-scale industrial piping system endowed with a number of critical components, like elbows, Tee joints and bolted flange joints, ranging from operational to collapse limit states. Then, the favourable performance of the L-Stable Real-Time compatible time integrator and an effective delay compensation method were also checked throughout the testing campaign. Finally, several aspects of the piping performance were commented and conclusions drawn.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.