• Title/Summary/Keyword: a optimum dimension

Search Result 130, Processing Time 0.029 seconds

Analysis of Flow Characteristics and Optimum Design of a Buckling Microvalve Using the Finite Element Method (유한요소법을 이용한 버클링 마이크로 밸브의 유동특성 해석 및 최적 설계)

  • Kim, Jae-Min;Lee, Jong-Choon;Chung, Gwiy-Sang;Yoon, Suk-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.383-386
    • /
    • 2002
  • This paper reports on the fluid flow simulation results of an active microvalve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in microvalve. Thus, it is expected that our simulation results would be apply for constructing integrated chemical analyzing system or drug delivery system.

  • PDF

Analysis of Waveguid Filter Using Green′s Absorbing Layer in three Dimension TLM Method (3차원 TLM 법에서 그린 흡수층을 이용한 도파관 필터의 해석)

  • 김병수;전계석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1001-1010
    • /
    • 2001
  • In TLM method, Discrete Green's function ABC have been used when improved the exactness of analyzing in wide frequency band. But this technology has a complicated process to apply absorbing boundary, which means it needs additional numerical analyzing process to obtain discrete Green's function data. so, In this paper, we propose new Green's absorbing layer for simple process to apply absorbing boundary. newly proposed Green's absorbing layer is produced by applying of loss operation, loading discrete Green's function with attenuation. A state of optimum absorbing would be obtained by relation between increasing rate of loss, attenuation constant and length of green's absorbing layer. and then Analysts of waveguide BPF is carried out using Green's absorbing layer within state of optimum absorbing, then this result is in corrective agreement with the result applying traditional discrete Green's function ABC.

  • PDF

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

A Study on Effective Energy Use of the Open Type Ground Heat Exchanger Using Underground Temperature Gradient (지중온도 경사를 이용한 효율적 지중에너지 이용 방안에 관한 연구)

  • Ryu, Hyungkyou;Chung, Minho;Lee, Byungseok;Rhew, Hyojun;Choi, Hyunjun;Choi, Hangseok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.401-408
    • /
    • 2014
  • This paper proposes an optimum operation method for open type ground heat exchangers. A series of TRTs and artificial heating/cooling operations were carried out while monitoring temperature in the hole of SCW. The ground temperature naturally increases with depth, but a switch between the cooling/heating mode results in a change in the distribution of ground temperature. The effect of the mode change was evaluated by performing LMTD and COMSOL multiphysics analysis for a reduced model with the depth of 150 m. As a result, in the cooling mode, the upstream operation is more efficient than the downstream operation and reduces EWT by $2.26^{\circ}C$. On the other hand, in the heating mode, the downstream operation is advantageous over the upstream operation and increases EWT by $3.19^{\circ}C$. The merit of the optimum operation will be enhanced for the typical dimension of SCW with a depth of 400~500 m. In the future, an open type ground heat exchanger system adopting the optimum operation with variation in the ground temperature will be used in practice.

Effective Light Management of Three-Dimensionally Patterned Transparent Conductive Oxide Layers

  • Kim, Joon-Dong;Kim, Min-Geon;Kim, Hyun-Yub;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.85-85
    • /
    • 2012
  • For effective light harvesting, a design weighting should be implemented in a front geometry, in which the incident light transmits from a surface into a light-active layer. We designed a three-dimensionally patterned transparent conductor layer for effective light management. A transparent conductive oxide (TCO) film was formed as three-dimensional structures. This efficiently drives the incident light at the front surface into a Si absorber to yield a reduction in reflection and an enhancement of current. This indicates that an optimum architecture for a front TCO surface will provide an effective way for light management in solar cells.

  • PDF

Experimental Study on Cutting State of Glass by Ultrasonic Scriber (초음파 절단기에 의한 유리 절단면의 상태에 관한 실험적 검토)

  • Lee Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.212-216
    • /
    • 2005
  • In an ultrasonic glass scriber, the effect of ultrasonic vibration and its optimum driving frequency were investigated experimentally. To investigate the optimum ultrasonic frequency theoretically, the vibration model of the ultrasonic scriber is assumed. The frequency for maximum amplitude of acceleration is obtained theoretically. To investigate the depth of cutting edge corresponding the each frequency. The quartz glass plate specimen with a dimension of $200mm(L){\times}30mm(W){\times}3mm(T)$ is selected. The ultrasonic transducer is operated by the constant acceleration amplitude for the every frequency. The maximum crack depth was generated when the driving frequency was 18.35kHz. These results were in good agreement with those of the calculated model theoretically.

  • PDF

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

A Study for optimum design of Thermal Storage tank (성층축열조 최적설계를 위한 연구)

  • Jang Dong-Soon;Shin Mi-Soo;Kim Hey-Suk;Song Hye-Young;Lee Young-Soo;Lee Sang-Nam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Numerical and experimental works have been made in order to figure out the physical mechanism of thermal storage system for the determination of optimal design and to enhance the thermal efficiency of the system. To this end a computer program is developed and evaluated successfully against experimental data measured with a bench scale facility. Considering the thermal efficiency of storage is critically impaired by the mixing effect, the minimum flow mixing situation is calculated by the assumption of uniform plug-type flow as a reference condition. Further a parametric systematic calculations have been made for a hypothetical full-scale storage system with Fr, storage dimension, diffuser type and loading hour, etc.

  • PDF

walking mechanism design based on Jansen mechanism for moving slope/ obstacle/ special surface (경사/ 장애물/ 특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Kim, So Won;Park, Young Cheol;Jeon, Eun Seo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.463-466
    • /
    • 2016
  • This study has designed a walking mechanism that is able to pass by a variety of environments, such as slope, obstructions, special surface in there, the mechanism suggested by Janssen has shown an ideal bridge structure made of 11 joints. V in the study, these programs are use that is m-sketch, m-designer, Janssen mechanism optimization solver for the optimum design of m-sketch, 3D component reflecting the given strip dimension is used because there is a limit in the given. As a result, a stable mechanism for walking could be implemented.

  • PDF

Optimum Design and Performance Characteristics Analysis of BLDC Motors for EPS (EPS용 BLDC 전동기의 최적 설계 및 성능 특성 해석)

  • Kim, Byung-Kuk;Hwang, Dong-Won;Jo, Won-Young;Jung, Gun-Seok;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1183-1185
    • /
    • 2005
  • This paper describes the optimal design and performance characteristics of the BLDC Motor for Electrical Power Steering System. To develope the optimal dimension within a given volume, BLDC Motor with the low cogging torque is designed and analyzed by FEM analysis. The prototype BLDC Motor has 4 poles rotor and 24 slots stator. To estimate the prototype machine, this paper gives the comparison between the FEM results and the experiment ones.

  • PDF