• Title/Summary/Keyword: a optimal structure

Search Result 2,943, Processing Time 0.043 seconds

Modal control algorithm on optimal control of intelligent structure shape

  • Yao, Guo Feng;Chen, Su Huan;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.451-462
    • /
    • 2003
  • In this paper, a new block iterative algorithm is presented by using the special feature of the continuous Riccati equation in the optimal shape control. Because the real-time control require that the CPU time should be as short as possible, an appropriate modal control algorithm is sought. The computing cost is less than the one of the all state feedback control. A numerical example is given to illustrate the algorithm.

A NEW ALGORITGMIC HEURISTICS FOR THE SYNTHESIS OF OPTIMAL HEAT EXCHANGER NETWORT

  • Cho, Y.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.819-824
    • /
    • 1989
  • This paper proposes a new method for the discovery and design of an optimal heat exchanger network. The method is based upon the concept of pinch, a problem reduction technique and the heuristics developed in this work. It generates subproblems in a logical way and solves the subproblems by the heuristics to synthesize an optimal network structure. It is thought that the heuristics can preserve the minimum utility consumption, the minimum number of heat exchanger units, and the minimum number of stream splittings needed for a given problem. The minimum heat exchanger area for the optimal network can then be obtained by adjusting the temperatures associate with the heat exchanger in the optimal network structure. The method is applied to the problems appeared in the literatures. The results show the reductions in the number of heat exchanger units for some problems.

  • PDF

Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure (선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법)

  • Kwon, Hyuk;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.

Design of an Optimal Planar Array Structure with Uniform Spacing for Side-Lobe Reduction

  • Bae, Ji-Hoon;Seong, Nak-Seon;Pyo, Cheol-Sig;Park, Jae-Ick;Chae, Jong-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2003
  • In this paper, we design an optimal planar array geometry for maximum side-lobe reduction. The concept of thinned array is applied to obtain an optimal two dimensional(2-D) planar array structure. First, a 2-D rectangular array with uniform spacing is used as an initial planar array structure. Next, we modify the initial planar array geometry with the aid of thinned array theory in order to reduce the maximum side-lobe level. This is implemented by a genetic algorithm under some constraint, minimizing the maximum side-lobe level of the 2-D planar array. It is shown that the optimized planar array structure can achieve low side-lobe level without optimizing the excitations of the array antennas.

A Study on the Optimal Initial Stress-Finding of Structures Stabilized by Cable-Tension (장력안정 구조물의 최적초기응력 탐색에 관한 연구)

  • 최옥훈;한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-294
    • /
    • 1999
  • The tensegrity structure by prestressed cable, which may have large freedom in scale and form and therefore are received much attention from the view points of their light weight and aesthetics, is a very flexible and geometrically unstable structure because the cable material has little initial rigidity. For the stable self-equilibrated state of the usually very deformable structure, the method to find the optimal initial stress by the shape analysis is proposed in this paper. The proposed procedure is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity and used to modified load incremental method adding to Newton-Raphson method with the proposed condition for optimal initial stress. The result of the shape analysis for the tensegrity structure with the radius of 30m is shown the almost approximated shape to architectural shape and the changed procedure of initial stress

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.

Optimal design of a piezoelectric smart structure for cabin noise control (실내소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.445-450
    • /
    • 1997
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction.

  • PDF