• Title/Summary/Keyword: a optimal structure

Search Result 2,959, Processing Time 0.029 seconds

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Structure-Control Combined Optimal Design with S/A Collocation (센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

Optimal Capital Structure of Listed Firms - A Structural Approach: Evidence from Vietnam

  • NGUYEN, Anh Thi Van;DAO, Binh Thi Thanh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.11
    • /
    • pp.213-221
    • /
    • 2021
  • The paper attempts to investigate the optimal capital structure of Vietnamese listed firms based on a structural approach. Using the data from around 70 companies in the Consumer Staples sector listed on the Vietnamese Stock Exchange during the period 2018-2020, this study finds that the optimal capital structure of examined companies has a wide range of diversification. This can be explained by the various types of actual products for each typical firm within the chosen sector. The result also confirms that a large proportion of researched firms were actually overleveraged, which is consistent with the trade-off hypothesis that firms wish to take tax advantages while using more debt, which creates the benefits from tax-shield. Furthermore, the research highlights the reversed correlation, which suggests that the lower the company's risk (the lower the sigma of the assets), the greater the optimal capital structure is suggested. Another interesting finding is that almost all consumer staples companies have a better optimal capital structure under the Leland and Toft (1996) model than under the Leland (1994) model. Furthermore, there is a strong correlation of optimal financial leverage ratio between years. In other words, the optimal debt levels of the latter year are strongly dependent on the gearing levels of the previous years.

Combined Optimal Design with Minimum Phase System (최소위상시스템을 고려한 통합최적설계)

  • 박중현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • A combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only the minimum weight design problem for the structure, but also the suppression problem of the effect of disturbances for the control system as the purpose of the design. A numerical example shows the validity of combined optimal design of the structure and control systems. We also consider the validity of the sensor-actuator collocation for the control system design in this paper.

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure (최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링)

  • Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.435-441
    • /
    • 2004
  • This paper deals with modelling and identification of a shipboard stabilized satellite antenna system using the optimal neural network structure. It is difficult for shipboard satellite antenna system to control and identification because of their approximating ability of nonlinear function So it is important to design the neural network with optimal structure for minimum error and fast response time. In this paper, a neural network structure using genetic algorithm is optimized And genetic algorithm is also used for identifying a shipboard satellite antenna system It is noticed that the optimal neural network structure actually describes the real movement of ship well. Through practical test, the optimal neural network structure is shown to be effective for modelling the shipboard satellite antenna system.

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Optimal design of a portable structure under impact loading (충격부하를 받는 휴대용 구조물의 최적설계)

  • Oh, Deog-Su;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.804-809
    • /
    • 2001
  • Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.

  • PDF

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF