• Title/Summary/Keyword: a optic fiber

Search Result 888, Processing Time 0.034 seconds

Multimode fiber-optic pressure sensor based on dielectric diaphragm (유전체 다이아프램을 이용한 다모드 광섬유 압력센서)

  • 김명규;권대혁;김진섭;박재희;이정희;손병기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.220-226
    • /
    • 1997
  • An optical intensity-type pressure sensor has been fabricated by coupling multimode optical fiber with 100 nm-Au/30 nm-NiCr/150 nm-$Si_3N_4/300 nm-SiO_2/150 nm-Si_3N_4$ optical reflection layer supported by micromachined frame-shape silicon substrate, and its characteristics was investigated. For the application of $Si_3N_4/SiO_2/Si_3N_4$ diaphragm to the optical reflection layer of the sensor, NiCr and Au films were deposited on the backside of the diaphragm by thermal evaporation , respectively, and thus optical low caused by transmission in the reflection layer could be decreased to a few percents. Dielectric diaphragms with uniform thickness were able to be also reproduced because top- and bottom-$Si_3N_4$ layer of the diaphragm could automatically stop silicon anisotropic etching. The respective pressure ranges in which the sensor showed linear optical output power-pressure characteristics were 0~126.64 kPa, 0~79. 98 kPa, and 0~46.66 kPa, and the respective pressure sensitivities of the sensor were about 20.69 nW/kPa, 26.70 nW/kPa, and 39.33 nW/kPa, for the diaphragm sizes of 3$\times$3 $\textrm{mm}^2$, 4$\times$4 $\textrm{mm}^2$, and 5$\times$5 $\textrm{mm}^2$, indicating that the sensitivity increases as diaphragm size increases.

  • PDF

Molding Quality Evaluation on Composite Laminate Panel for Railway Vehicle through Cure Monitoring using FBG Sensors (광섬유 FBG 센서기반 성형 모니터링을 통한 철도 차량용 복합재 내장재 패널의 성형 품질 평가)

  • Juyeop Park;Donghoon Kang
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • Recently, in the field of railway vehicles, interest in the use of composite materials for weight reduction and transportation efficiency is increasing. Accordingly, research and commercialization development to apply composite materials to various vehicle parts are being actively conducted, and evaluation is conducted centering on post-measurement such as mechanical performance evaluation of finished products to verify quality when composite materials are applied. However, the analysis of heat and stress generated during the molding process of composite materials, which are factors that greatly affect manufacturing quality, is insufficient. Therefore, in this study, in order to verify the molding quality of composite parts for railway vehicles, the molding quality analysis was conducted for the two types of composite interior panels (laminate panel and sandwich panel) that are most actively used. To this end, temperature and strain changes were monitored during the molding process by using an FBG fiber optic sensor, which is easy to apply to the inside of the composite, and the residual strain value generated after molding was completed was measured. As a result, it was confirmed that overheating and excessive residual stress did not occur, thereby verifying the excellent molding quality of the composite interior panel for railway vehicles.

Ultrastructure of the Eye in the Snail, Incilaria fruhstorferi (산민달팽이 (Incilaria fruhstorferi) 눈의 미세구조)

  • Chang, Nam-Sub;Han, Jong-Min;Lee, Kwang-Joo
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.363-377
    • /
    • 1998
  • After the investigation on the eye of Incilaria fruhstorieri with light and electron microscopes, the following results were obtained. The eye of Incilaria fruhstorferi comprises cornea, lens, vitreous body, retina, and optic nerve inward from the outside. Cornea is composed of squamous, cuboid, columnar and irregular cells, which appear to be light due to their low electron density. In their cytoplasms, glycogen granules, multivesicular body, and nucleus were observed. Vitreous body, located behind non-cellular transparent lens, is filled with long and short microvilli protruding from the retinal epithelia. Retinal epithelium, the organ to perceive objects, is divided into four parts; microvillar layer pigment layer, nuclear layer, and neutrophils layer, from the apical portion. Microvillar layer consists of the type-I photoreceptor cells and pigmented granule cells. In the apical portion of their cytoplasms, long microvilli (length, $19{\mu}m$) , short microvilli (length, $8{\mu}m$), and rolled microvilli grow thick in the irregular and mixed forms. Photoreceptor cells are classified into type-I and type-II, according to their structures. The type-I cell has the apical portion rising roundly like a fan and the lower part which looks like the helve of a fan. In the cytoplasm of the apical portion, there are clear vesicles, cored vesicles, ovoid mitochondria, and microfilaments, and in the cytoplasm of the lower part, photic vesicles with their diameters about 60nm aggregate densely. The type-II photoreceptor cell, located at the lower end of the type-I cells, has a very large ovoid nucleus 3nd no microvilli. In the cytoplasm of the type-II cell, the photic vesicles with sizes 60nm aggregate more densely than in the cytoplasm of the type-I cell. Pigmented cells are classified into type-A and type-B, according to their structures. The type-A is identified to be a large cell containing round granules (diameter, $0.5{\mu}m$) of very high electron density, while the type-B is identified as a small cell where the irregular granules (diameter, $0.6{\mu}m$) of a little lower electron density amalgamate. Nuclear layer ranges from the bottom of pigment layer to the top of the capsule, and contains three kinds of nuclei (nuclei of the type-II photoreceptor cell, pigmented granule cell, and accessory neuron). The capsules covering the outmost part of the eyeball are composed of collagenous fiber and three longitudinal muscle layers (the thickness of each longitudinal muscle layer, $0.4{\mu}m$) and thick circular muscle layer (thickness, $0.3{\mu}m$). Around the capsules, there is a neurophile layer consisting of neurons and nerve fibers. Each neuron has a relatively large ovoid nucleus for its cytoplasm, and in the karyosome, large lumps of keterochromatin form a wheel nucleus.

  • PDF

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

A Mouse Model of Photochemically Induced Spinal Cord Injury

  • Piao, Min Sheng;Lee, Jung-Kil;Jang, Jae-Won;Kim, Soo-Han;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.5
    • /
    • pp.479-483
    • /
    • 2009
  • Objective : A mouse model of spinal cord injury (SCI) could further increase our basic understanding of the mechanisms involved in injury and repair of the nervous system. The purpose of this study was to investigate whether methods used to produce and evaluate photochemical graded ischemic SCI in rats, could be successfully adapted to mice, in a reliable and reproducible manner. Methods : Thirty female imprinting control region mice (weighting 25-30 g, 8 weeks of age) were used in this study. Following intraperitoneal injection of Rose bengal, the translucent dorsal surface of the T8-T9 vertebral laminae of the mice were illuminated with a fiber optic bundle of a cold light source. The mice were divided into three groups; Group 1 (20 mg/kg Rose bengal, 5 minutes illumination), Group 2 (20 mg/kg Rose bengal, 10 minutes illumination), and Group 3 (40 mg/kg Rose bengal, 10 minutes illumination). The locomotor function, according to the Basso-Beattie-Bresnahan scale, was assessed at three days after the injury and then once per week for four weeks. The animals were sacrificed at 28 days after the injury, and the histopathology of the lesions was assessed. Results : The mice in group 1 had no hindlimb movement until seven days after the injury. Most mice had later recovery with movement in more than two joints at 28 days after injury. There was limited recovery of one joint, with only slight movement, for the mice in groups 2 and 3. The histopathology showed that the mice in group 1 had a cystic cavity involving the dorsal and partial involvement of the dorsolateral funiculi. A larger cavity, involving the dorsal, dorsolateral funiculi and the gray matter of the dorsal and ventral horns was found in group 2. In group 3, most of the spinal cord was destroyed and only a thin rim of tissue remained. Conclusion : The results of this study show that the photochemical graded ischemic SCI model. described in rats, can be successfully adapted to mice, in a reliable and reproducible manner. The functional deficits are correlated an increase in the irradiation time and, therefore, to the severity of the injury. The photothrombotic model of SCI, in mice with 20 mg/kg Rose bengal for 5 minutes illumination, provides an effective model that could be used in future research. This photochemical model can be used for investigating secondary responses associated with traumatic SCI.

An Analysis of FSK Transmission Characteristics of Spectrum Sliced Optical Signals (스펙트럼 분할된 광신호의 FSK 전송 특성 해석)

  • Ha, Eun-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.339-344
    • /
    • 2016
  • Since transmissions of large amounts of data are frequent, users require more bandwidth, and the need for communications networks having greater bandwidth is increasing. One communications network satisfying this need is an optical communications network. Therefore, studies to increase the transmission capacity of optical communications systems have been carried out. However, in a general optical communications system, a signal transmitted through optical fiber (a transmission medium) is detected through direct detection in the receiving system. This method has a disadvantage in that the entire bandwidth of the optical signal cannot be utilized. Also, when transmitting an optical signal, there is a problem where the signal-to-noise ratio is affected by neighboring channels. To overcome this situation, various studies are being conducted to minimize the influence of external interference and noise. This paper overcomes the situation by transmitting spectrum-sliced signals using the digital transmission system, FSK. Analyzing the characteristics of the signals detected in the receiver of the optical communications system, Gaussian distribution is used for the PDF of the spectrum-sliced signal, and the signal at the receiving end of the optical communications system is assumed to have a k-square distribution. The results of the analysis confirmed it is better to transmit the spectrally divided signal rather than transmit the laser source.

Determination of the water content in citrus leaves by portable near infrared (NIR) system (근적외분광분석법을 이용한 감귤잎의 수분 측정)

  • Suh, Eun-Jung;Woo, Young-Ah;Lim, Hun-Rang;Kim, Hyo-Jin;Moon, Doo-Gyung;Choi, Young-Hun
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-282
    • /
    • 2003
  • The amount of water for the cultivation of citrus is different based on the growing period. The effect of water stress induces to enhance of sugar accumulation in citrus. The water content in the leaves of citrus can be a index for watering during cultivation. The purpose of this study is to determine the water content of citrus leaves non-destructively by using near infrared spectroscopy (NIRS). Citrus leaves were prepared from 'Okitsu' Satusuma mandarin leaves (Citrus unshiu Marc.) ranging from 20.80 to 69.98% of water content by loss on drying method, and NIR reflectance spectra of citrus leaves were acquired by using a fiber optic probe. It was found that the variation of absorbance band 1450 nm from OH vibration of water depending on the water content change. Partial least squares regression (PLSR) was applied to develop a calibration model over the spectral range 1100-1700 nm. The calibration model predicted the water content for the validation set with a standard errors of prediction (SEP) of 0.97%. In order to validate the developed calibration model, routine analyses were performed using independently prepared citrus leaves. The NIR routine analyses showed good results with those of loss on drying method with a SEP of 0.81%. The rapid and non-destructive determination of the water content in citrus leaves was successfully performed by portable NIR system.

Study of Radio Frequency Thawing for Cylindrical Pork Sirloin

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.108-115
    • /
    • 2016
  • Purpose: Radio frequency (RF) heating is a promising thawing method, but it frequently causes undesirable problems such as non-uniform heating. This can occur because of the food shape, component distribution, and initial temperature differences between food parts. In this study, RF heating was applied to the thawing of cylindrically shaped pork sirloin by changing the shape of electrodes and the surrounding temperature. Methods: Curved electrodes were utilized to increase the thawing uniformity of cylindrically shaped frozen meat. Pork sirloin in the shape of a half-circle column was frozen in a deep freezer at $-70^{\circ}C$ and then thawed by RF heating with flat and curved electrodes. In order to prevent fast defrosting of the food surface by heat transfer from air to the food, the temperature of the thawing chamber was varied by -5, -10, and $-20^{\circ}C$. The temperature values of the frozen pork sirloin during RF thawing were measured using fiber-optic thermo sensors. Results: After multiple applications of curved electrodes resembling the food shape, and a cooled chamber at $-20^{\circ}C$ the half-cylindrically shaped meat was thawed without surface burning, and the temperature values of each point were similarly increased. However, with the parallel electrode, the frozen meat was partially burned by RF heating and the temperature values of center were overheated. The uniform heating rate and heat transfer prevention from air to the food were crucial factors for RF thawing. In this study, these crucial factors were accomplished by using a curved electrode and lowering the chamber temperature. Conclusions: The curved shape of the electrode and the equipotential surface calculated from the modeling of the parallel capacitor showed the effect of uniform heating of cylindrically shaped frozen food. Moreover, the low chamber temperature was effective on the prevention of the surface burning during RF thawing.

Exploration of suitable rice cultivars for close mixed-planting with upland-adapted cereal crop

  • Shinohara, Nodoka;Shimamoto, Hitoshi;Kawato, Yoshimasa;Wanga, Maliata A.;Hirooka, Yoshihiro;Yamane, Koji;Iijima, Morio
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.304-304
    • /
    • 2017
  • In semi-arid countries such as Namibia, the flooding unexpectedly happens in a rainy season, causing losses in the yield of upland-adapted cereal crop. In flooding conditions, rice roots sequentially form aerenchyma and a barrier to radial oxygen loss (ROL), and oxygen is released into the rhizosphere near the root tips. Iijima et al. (2016) and Awala et al. (2016) reported that close mixed-planting with rice can mitigate the flood stress of co-growing upland-adapted cereal crop by modifying their rhizosphere microenvironments via the oxygen released from the rice roots. Moreover, by using the model system of hydroponic culture, it was confirmed that oxygen from rice roots was transferred to co-growing upland-adapted cereal crop in close mixed planting system (Kawato et al., 2016). However, it is not sure whether the ability of oxygen release varies among rice cultivars, because Kawato et al. (2016) used only one japonica cultivar, Nipponbare (Oryza sativa). The objective of this study was to compare the ability of oxygen release in rhizosphere among rice cultivars. The experiment was conducted in a climate chamber in Kindai University. We used 10 rice cultivars from three different rice species (O. sativa (var. japonica (2), var. indica (3)), Oryza glaberrima Steud. (2) and their interspecific progenies (3)) to compare the ability of oxygen release from the roots. According to the method by Kawato et al. (2016), the dissolved oxygen concentration of phase I (with shoot) and phase II (without shoot) were measured by a fiber optic oxygen-sensing probe. The oxygen released from rice roots was calculated from the difference of the measurements between phase I and phase II. The result in this study indicated that all of the rice cultivars released oxygen from their roots, and the amount of released oxygen was significantly correlated with the above-ground biomass (r = 0.710). The ability of oxygen release (the amount of the oxygen release per fresh root weight) of indica cultivars (O. sativa) tended to be higher as compared with the other cultivars. On the other hand, that of African rice (O. glaberrima) and the interspecific progenies tended to be lower. These results suggested that the ability of oxygen release widely varies among rice cultivars, and some of indica cultivars (O. sativa) may be suitable for close mixed-planting to mitigate flood stress of upland-adapted cereal crop.

  • PDF

A Case Study of Blast Demolition at Chung-Ang Department Store in Daejeon City (대전 중앙데파트 발파해체 사례)

  • Min, Hyung-Dong;Park, Jong-Ho;Song, Young-Suk;Park, Hoon
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.62-78
    • /
    • 2009
  • Recently, construction techniques have been rapidly developed with reconstruction of old buildings, urban regeneration and efforts of restoring natural ecology, so demolition of deteriorated buildings has been rapidly increasing. Demolition work of building should be executed without damaging surrounding environments according to relevant regulations. There are various demolition methods and among them, explosives demolition is the most practical way for expenses and safety of work. As a part of Daejeon stream ecological restoration project, this thesis is a case of executing demolition of Chung-Ang Department Store which was built 35 years ago as covered structure on the upper part of Daejeon stream with explosives demolition. This structure is 8 stories high, total height of 41.6 m including basement floor, $1,650m^2$ for building area and $18,351m^2$ for total floor area. It is located in the center of Daejeon city where shopping centers and buildings are crowded and main facilities are Daejeon subway (18m), backside shopping center (20m), underground shopping center(15m), Mokchuk bridge, Eunjung bridge(0.25m) and fiber-optic cable(0.25m). In this project, implosion was selected for explosives demolition methods by considering this area being a busy urban area, and this project was executed after examining collapse movement of structure in advance using simulation program not to damage main facilities. Total 80kg of explosives and 1,000 detonators were being used. This project will be a good case of executing explosives demolition successfully by applying implosion on urban area in the country.