• Title/Summary/Keyword: a new shear deformation theory

Search Result 226, Processing Time 0.02 seconds

A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates

  • Haldar, S.;Manna, M.C.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.213-229
    • /
    • 2003
  • A high precision shear deformable triangular element has been proposed for free vibration analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eight by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal laminate with concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme has been recommended, where the effect of rotary inertia has been included. For validation of the present element and formulation few results of isotropic trapezoidal plate and square composite laminate have been compared with those obtained from open literatures. The numerical results for composite trapezoidal laminate have been given as new results.

Development of a Mechanical Crack Model to Analyze Deformation and Failure Mechanism of Rock (암석의 변형 및 파괴거동의 해석을 위한 균열모형 개발에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.96-106
    • /
    • 1998
  • Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.

  • PDF

p-Version Finite Element Model of Cracked Plates Including Shear Deformation under Flexural Behavior (휨거동을 받는 균열판의 전단변형을 고려한 p-Version 유한요소모델)

  • Lee, C.G.;K.S.Woo;Shin, Y.S.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.16-23
    • /
    • 1993
  • The new p-version crack model is proposed to estimate the bending stress intensity factors of the thick cracked plate under flexure. The proposed model is based on high order theory and $C^{\circ}$-plate element including shear deformation. The displacements fields are defined by integrals of Legerdre polynomials which can be classified into three groups such as basic mode, side mode and internal mode. The computer implementation allows arbitrary variations of p-level up to a maximum value of 10. The bending stress intensity factors are computed by virtual crack extention approach. The effects of ratios of thickness to crack length(h/a), crack length to width(a/W) and boundary conditions are investigated. Very good agreement with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation

  • Najafov, A.M.;Sofiyev, A.H.;Hui, D.;Karaca, Z.;Kalpakci, V.;Ozcelik, M.
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.453-470
    • /
    • 2014
  • This article is the result of an investigation on the influence of a Pasternak elastic foundation on the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape function is distributed parabolic manner through the shell thickness. The governing equations of EG orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based on FOSDT are investigated.

Dynamic response of functionally graded annular/circular plate in contact with bounded fluid under harmonic load

  • Yousefzadeh, Sh.;Jafari, A.A.;Mohammadzadeh, A.;Najafi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.523-533
    • /
    • 2018
  • In this study, the dynamic response of a functionally graded material (FGM) circular plate in contact with incompressible fluid under the harmonic load is investigated. Analysis of the plate is based on First-order Shear Deformation Plate Theory (FSDT). The governing equation of the oscillatory behavior of the fluid is obtained by solving Laplace equation and satisfying its boundary conditions. A new set of admissible functions, which satisfy both geometrical and natural boundary conditions, are developed for the free vibration analysis of moderately thick circular plate. The Chebyshev-Ritz Method is employed together with this set of admissible functions to determine the vibrational behaviors. The modal superposition approach is used to determine the dynamic response of the plate exposed to harmonic loading. Numerical results of the force vibrations and the effects of the different geometrical parameters on the dynamic response of the plate are investigated. Finally, the results of this research in the limit case are compared and validated with the results of other researches and finite element model (FEM).

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory

  • Allah, Mohamed Janane;Timesli, Abdelaziz;Belaasilia, Youssef
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The free and forced nonlinear dynamic behaviors of Porous Functionally Graded Material (PFGM) plates are examined by means of a High-Order Implicit Algorithm (HOIA). The formulation is developed using the Third-order Shear Deformation Theory (TSDT). Unlike previous works, the formulation is written without resorting to any homogenization technique neither rule of mixture nor considering FGM as a laminated composite, and the distribution of the porosity is assumed to be gradually variable through the thickness of the PFGM plates. Using the Hamilton principle, we establish the governing equations of motion. The Finite Element Method (FEM) is used to compute approximations of the resulting equations; FEM is adopted using a four-node quadrilateral finite element with seven Degrees Of Freedom (DOF) per node. Nonlinear equations are solved by a HOIA. The accuracy and the performance of the proposed approach are verified by presenting comparisons with literature results for vibration natural frequencies and dynamic response of PFGM plates under external loading. The influences of porosity volume fraction, porosity distribution, slenderness ratio and other parameters on the vibrations of PFGM plate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of the PFGM plate.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.