• Title/Summary/Keyword: a neural-net

Search Result 696, Processing Time 0.024 seconds

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Armed person detection using Deep Learning (딥러닝 기반의 무기 소지자 탐지)

  • Kim, Geonuk;Lee, Minhun;Huh, Yoojin;Hwang, Gisu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.780-789
    • /
    • 2018
  • Nowadays, gun crimes occur very frequently not only in public places but in alleyways around the world. In particular, it is essential to detect a person armed by a pistol to prevent those crimes since small guns, such as pistols, are often used for those crimes. Because conventional works for armed person detection have treated an armed person as a single object in an input image, their accuracy is very low. The reason for the low accuracy comes from the fact that the gunman is treated as a single object although the pistol is a relatively much smaller object than the person. To solve this problem, we propose a novel algorithm called APDA(Armed Person Detection Algorithm). APDA detects the armed person using in a post-processing the positions of both wrists and the pistol achieved by the CNN-based human body feature detection model and the pistol detection model, respectively. We show that APDA can provide both 46.3% better recall and 14.04% better precision than SSD-MobileNet.

A Quality Prediction Model for Ginseng Sprouts based on CNN (CNN을 활용한 새싹삼의 품질 예측 모델 개발)

  • Lee, Chung-Gu;Jeong, Seok-Bong
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • As the rural population continues to decline and aging, the improvement of agricultural productivity is becoming more important. Early prediction of crop quality can play an important role in improving agricultural productivity and profitability. Although many researches have been conducted recently to classify diseases and predict crop yield using CNN based deep learning and transfer learning technology, there are few studies which predict postharvest crop quality early in the planting stage. In this study, a early quality prediction model is proposed for sprout ginseng, which is drawing attention as a healthy functional foods. For this end, we took pictures of ginseng seedlings in the planting stage and cultivated them through hydroponic cultivation. After harvest, quality data were labeled by classifying the quality of ginseng sprout. With this data, we build early quality prediction models using several pre-trained CNN models through transfer learning technology. And we compare the prediction performance such as learning period and accuracy between each model. The results show more than 80% prediction accuracy in all proposed models, especially ResNet152V2 based model shows the highest accuracy. Through this study, it is expected that it will be able to contribute to production and profitability by automating the existing seedling screening works, which primarily rely on manpower.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Development of Control Method for Air-Conditioner as the Resources of DLC (직접부하제어자원으로서 에어컨 주기제어 방법론 개발)

  • Doo, Seog-Bae;Kim, Jeoung-Uk;Kim, Hyeong-Jung;Kim, Hoi-Cheol;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.145-147
    • /
    • 2005
  • This paper presents a methodology for satisfying the thermal comfort of Indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. KEPCO(Korea Electric Power Corporation) use the fixed duty cycle control method regardless of the indoor thermal environment. This method has disadvantages that energy saying depends on the set-point value of the Air-Conditioner and DLC has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. A variable duty cycle estimates the PMV(Predict Mean Vote) at the next step with a predicted temperature and humidity coming from the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. The proposed methodology uses the historical real data of Sep. 7th, 2001 from a classroom in seoul to verify the effectiveness of the variable duty cycle method comparing with fixed duty cycle. The result shows that the variable duty cycle reduces the peak demand to 2.6times more than fixed duty cycle and increases the load control ratio by 8% more. Based on the variable duty cycle control algorithm, the effectiveness of DLC is much more improved as compared with the fixed duty cycle.

  • PDF

A Date Mining Approach to Intelligent College Road Map Advice Service (데이터 마이닝을 이용한 지능형 전공지도시스템 연구)

  • Choe, Deok-Won;Jo, Gyeong-Pil;Sin, Jin-Gyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.266-273
    • /
    • 2005
  • Data mining techniques enable us to generate useful information for decision support from the data sources which are generated and accumulated in the process of routine organizational management activities. College administration system is a typical example that produces a warehouse of student records as each and every student enters a college and undertakes the curricular and extracurricular activities. So far, these data have been utilized to a very limited student service purposes, such as issuance of transcripts, graduation evaluation, GPA calculation, etc. In this paper, we utilize Holland career search test results, TOEIC score, course work list, and GPA score as the input for data mining and generation the student advisory information. Factor analysis, AHP(Analytic Hierarchy Process), artificial neural net, and CART(Classification And Regression Tree) techniques are deployed in the data mining process. Since these data mining techniques are very powerful in processing and discovering useful knowledge and information from large scale student databases, we can expect a highly sophisticated student advisory knowledge and services which may not be obtained with the human student advice experts.

  • PDF

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Deep Learning: High-quality Imaging through Multicore Fiber

  • Wu, Liqing;Zhao, Jun;Zhang, Minghai;Zhang, Yanzhu;Wang, Xiaoyan;Chen, Ziyang;Pu, Jixiong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Deep learning-based apical lesion segmentation from panoramic radiographs

  • Il-Seok, Song;Hak-Kyun, Shin;Ju-Hee, Kang;Jo-Eun, Kim;Kyung-Hoe, Huh;Won-Jin, Yi;Sam-Sun, Lee;Min-Suk, Heo
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.351-357
    • /
    • 2022
  • Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs. Materials and Methods: A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score. Results: In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5. Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.