• Title/Summary/Keyword: a neural-net

Search Result 696, Processing Time 0.026 seconds

ResNet-Based Simulations for a Heat-Transfer Model Involving an Imperfect Contact

  • Guangxing, Wang;Gwanghyun, Jo;Seong-Yoon, Shin
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.303-308
    • /
    • 2022
  • Simulating the heat transfer in a composite material is an important topic in material science. Difficulties arise from the fact that adjacent materials cannot match perfectly, resulting in discontinuity in the temperature variables. Although there have been several numerical methods for solving the heat-transfer problem in imperfect contact conditions, the methods known so far are complicated to implement, and the computational times are non-negligible. In this study, we developed a ResNet-type deep neural network for simulating a heat transfer model in a composite material. To train the neural network, we generated datasets by numerically solving the heat-transfer equations with Kapitza thermal resistance conditions. Because datasets involve various configurations of composite materials, our neural networks are robust to the shapes of material-material interfaces. Our algorithm can predict the thermal behavior in real time once the networks are trained. The performance of the proposed neural networks is documented, where the root mean square error (RMSE) and mean absolute error (MAE) are below 2.47E-6, and 7.00E-4, respectively.

Beta and Alpha Regularizers of Mish Activation Functions for Machine Learning Applications in Deep Neural Networks

  • Mathayo, Peter Beatus;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.136-141
    • /
    • 2022
  • A very complex task in deep learning such as image classification must be solved with the help of neural networks and activation functions. The backpropagation algorithm advances backward from the output layer towards the input layer, the gradients often get smaller and smaller and approach zero which eventually leaves the weights of the initial or lower layers nearly unchanged, as a result, the gradient descent never converges to the optimum. We propose a two-factor non-saturating activation functions known as Bea-Mish for machine learning applications in deep neural networks. Our method uses two factors, beta (𝛽) and alpha (𝛼), to normalize the area below the boundary in the Mish activation function and we regard these elements as Bea. Bea-Mish provide a clear understanding of the behaviors and conditions governing this regularization term can lead to a more principled approach for constructing better performing activation functions. We evaluate Bea-Mish results against Mish and Swish activation functions in various models and data sets. Empirical results show that our approach (Bea-Mish) outperforms native Mish using SqueezeNet backbone with an average precision (AP50val) of 2.51% in CIFAR-10 and top-1accuracy in ResNet-50 on ImageNet-1k. shows an improvement of 1.20%.

A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board (임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조)

  • Lee, Junyeop;Lee, Youngwan
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.94-98
    • /
    • 2018
  • We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.

Development of ResNet based Crop Growth Stage Estimation Model (ResNet 기반 작물 생육단계 추정 모델 개발)

  • Park, Jun;Kim, June-Yeong;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • Due to the accelerated global warming phenomenon after industrialization, the frequency of changes in the existing environment and abnormal climate is increasing. Agriculture is an industry that is very sensitive to climate change, and global warming causes problems such as reducing crop yields and changing growing regions. In addition, environmental changes make the growth period of crops irregular, making it difficult for even experienced farmers to easily estimate the growth stage of crops, thereby causing various problems. Therefore, in this paper, we propose a CNN model for estimating the growth stage of crops. The proposed model was a model that modified the pooling layer of ResNet, and confirmed the accuracy of higher performance than the growth stage estimation of the ResNet and DenseNet models.

Landmark Selection Using CNN-Based Heat Map for Facial Age Prediction (안면 연령 예측을 위한 CNN기반의 히트 맵을 이용한 랜드마크 선정)

  • Hong, Seok-Mi;Yoo, Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.1-6
    • /
    • 2021
  • The purpose of this study is to improve the performance of the artificial neural network system for facial image analysis through the image landmark selection technique. For landmark selection, a CNN-based multi-layer ResNet model for classification of facial image age is required. From the configured ResNet model, a heat map that detects the change of the output node according to the change of the input node is extracted. By combining a plurality of extracted heat maps, facial landmarks related to age classification prediction are created. The importance of each pixel location can be analyzed through facial landmarks. In addition, by removing the pixels with low weights, a significant amount of input data can be reduced.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.

Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network (코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가)

  • Hong, Jun-Yong;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

Extending Caffe for Machine Learning of Large Neural Networks Distributed on GPUs (대규모 신경회로망 분산 GPU 기계 학습을 위한 Caffe 확장)

  • Oh, Jong-soo;Lee, Dongho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.4
    • /
    • pp.99-102
    • /
    • 2018
  • Caffe is a neural net learning software which is widely used in academic researches. The GPU memory capacity is one of the most important aspects of designing neural net architectures. For example, many object detection systems require to use less than 12GB to fit a single GPU. In this paper, we extended Caffe to allow to use more than 12GB GPU memory. To verify the effectiveness of the extended software, we executed some training experiments to determine the learning efficiency of the object detection neural net software using a PC with three GPUs.

A Study on Image Interpolation Using SOFM and LAM (SOFM과 LAM을 이용한 영상 보간에 관한 연구)

  • Chang, Dong-Eon;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.640-642
    • /
    • 1998
  • When resampling an image to a new set of coordinates, there is often a noticeable loss in image quality. The interpolation kernel determines the quality of interpolation. In this paper, We think two interpolation methods: cubic-spline method, neural net method, at first study given interpolation method using spline and then present new interpolation methon using SOFM and LAM(neural net method), finally compare the performance of several interpolation methods including replication, bilinear, spline and new methods.

  • PDF