• Title/Summary/Keyword: a neural-net

검색결과 697건 처리시간 0.025초

Comparison of Deep-Learning Algorithms for the Detection of Railroad Pedestrians

  • Fang, Ziyu;Kim, Pyeoungkee
    • Journal of information and communication convergence engineering
    • /
    • 제18권1호
    • /
    • pp.28-32
    • /
    • 2020
  • Railway transportation is the main land-based transportation in most countries. Accordingly, railway-transportation safety has always been a key issue for many researchers. Railway pedestrian accidents are the main reasons of railway-transportation casualties. In this study, we conduct experiments to determine which of the latest convolutional neural network models and algorithms are appropriate to build pedestrian railroad accident prevention systems. When a drone cruises over a pre-specified path and altitude, the real-time status around the rail is recorded, following which the image information is transmitted back to the server in time. Subsequently, the images are analyzed to determine whether pedestrians are present around the railroads, and a speed-deceleration order is immediately sent to the train driver, resulting in a reduction of the instances of pedestrian railroad accidents. This is the first part of an envisioned drone-based intelligent security system. This system can effectively address the problem of insufficient manual police force.

A Study on the Korean Text-to-Speech Using Demisyllable Units (반음절단위를 이용한 한국어 음성합성에 관한 연구)

  • Yun, Gi-Sun;Park, Sung-Han
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제27권10호
    • /
    • pp.138-145
    • /
    • 1990
  • This paper present a rule-based speech synthesis method for improving the naturalness of synthetic speech and using the small data base based on demisyllable units. A 12-pole Linear Prediction Coding method is used to analyses demisyllable speech signals. A syllable and vowel concatenation rule is developed to improve the naturalness and intelligibility of the synthetic speech. in addiion, phonological structure transform rule using neural net and prosody rules are applied to the synthetic speech.

  • PDF

Game Sprite Generator Using a Multi Discriminator GAN

  • Hong, Seungjin;Kim, Sookyun;Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4255-4269
    • /
    • 2019
  • This paper proposes an image generation method using a Multi Discriminator Generative Adversarial Net (MDGAN) as a next generation 2D game sprite creation technique. The proposed GAN is an Autoencoder-based model that receives three areas of information-color, shape, and animation, and combines them into new images. This model consists of two encoders that extract color and shape from each image, and a decoder that takes all the values of each encoder and generates an animated image. We also suggest an image processing technique during the learning process to remove the noise of the generated images. The resulting images show that 2D sprites in games can be generated by independently learning the three image attributes of shape, color, and animation. The proposed system can increase the productivity of massive 2D image modification work during the game development process. The experimental results demonstrate that our MDGAN can be used for 2D image sprite generation and modification work with little manual cost.

3D Res-Inception Network Transfer Learning for Multiple Label Crowd Behavior Recognition

  • Nan, Hao;Li, Min;Fan, Lvyuan;Tong, Minglei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1450-1463
    • /
    • 2019
  • The problem towards crowd behavior recognition in a serious clustered scene is extremely challenged on account of variable scales with non-uniformity. This paper aims to propose a crowed behavior classification framework based on a transferring hybrid network blending 3D res-net with inception-v3. First, the 3D res-inception network is presented so as to learn the augmented visual feature of UCF 101. Then the target dataset is applied to fine-tune the network parameters in an attempt to classify the behavior of densely crowded scenes. Finally, a transferred entropy function is used to calculate the probability of multiple labels in accordance with these features. Experimental results show that the proposed method could greatly improve the accuracy of crowd behavior recognition and enhance the accuracy of multiple label classification.

Predicting Audit Reports Using Meta-Heuristic Algorithms

  • Valipour, Hashem;Salehi, Fatemeh;Bahrami, Mostafa
    • Journal of Distribution Science
    • /
    • 제11권6호
    • /
    • pp.13-19
    • /
    • 2013
  • Purpose - This study aims to predict the audit reports of listed companies on the Tehran Stock Exchange by using meta-heuristic algorithms. Research design, data, methodology - This applied research aims to predict auditors reports' using meta-heuristic methods (i.e., neural networks, the ANFIS, and a genetic algorithm). The sample includes all firms listed on the Tehran Stock Exchange. The research covers the seven years between 2005 and 2011. Results - The results show that the ANFIS model using fuzzy clustering and a least-squares back propagation algorithm has the best performance among the tested models, with an error rate of 4% for incorrect predictions and 96% for correct predictions. Conclusion - A decision tree was used with ten independent variables and one dependent variable the less important variables were removed, leaving only those variables with the greatest effect on auditor opinion (i.e., net-profit-to-sales ratio, current ratio, quick ratio, inventory turnover, collection period, and debt coverage ratio).

Optical Neural-Net Analog-to-Digital Converter:Implementation and Application (광신경망 A/D변환기:구현 및 응용)

  • 장주석;고상호;이수영;신상영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제38권10호
    • /
    • pp.795-804
    • /
    • 1989
  • A parallel analog-to digital converter with neuron-like elements is designed and optically implemented. Its operation principle is based on the simultaneous estimation of bit values for a given analog input. The architecture of the proposed analog-to-digital converter is simpler than that of an earlier one designed by the energy minimization technique, and its digital output is independent of the initial state. Mixed binary-to-full binary converters are also designed by using out analog-to-digital converters as basic computing elements. These converters have simple structures and fast conversion times compared with earlier ones.

  • PDF

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제66권7호
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.

Feature Impact Evaluation Based Pattern Classification System

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • 제23권11호
    • /
    • pp.25-30
    • /
    • 2018
  • Pattern classification system is often an important component of intelligent systems. In this paper, we present a pattern classification system consisted of the feature selection module, knowledge base construction module and decision module. We introduce a feature impact evaluation selection method based on fuzzy cluster analysis considering computational approach and generalization capability of given data characteristics. A fuzzy neural network, OFUN-NET based on unsupervised learning data mining technique produces knowledge base for representative clusters. 240 blemish pattern images are prepared and applied to the proposed system. Experimental results show the feasibility of the proposed classification system as an automating defect inspection tool.

Realization of Check Valve Condition Monitoring system using AE sensor (AE 센서를 이용한 Check Valve 상태감시 시스템 구현)

  • Jeon, Jeong-Seob;Lee, Seung-Youn;Beak, Seoung-Mun;Lyou, Joon;Kim, Jeong-Su
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.49-51
    • /
    • 2004
  • This paper presents a realization of fault detection algorithm and Fieldbus based communication for condition monitoring of check valve. We first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, extract fault features through the learned Neural network, and send the processed data to a remote site. The overall system has been implemented and experimental results are given to show its effectiveness.

  • PDF

Forecasting uranium prices: Some empirical results

  • Pedregal, Diego J.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1334-1339
    • /
    • 2020
  • This paper presents an empirical and comprehensive forecasting analysis of the uranium price. Prices are generally difficult to forecast, and the uranium price is not an exception because it is affected by many external factors, apart from imbalances between demand and supply. Therefore, a systematic analysis of multiple forecasting methods and combinations of them along repeated forecast origins is a way of discerning which method is most suitable. Results suggest that i) some sophisticated methods do not improve upon the Naïve's (horizontal) forecast and ii) Unobserved Components methods are the most powerful, although the gain in accuracy is not big. These two facts together imply that uranium prices are undoubtedly subject to many uncertainties.