• Title/Summary/Keyword: a model based control

Search Result 7,709, Processing Time 0.037 seconds

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_{\infty}$ Framework

  • Choi, Jong-Hwan;Kim, Seung-Soo;Cho, Hyun-Cheol;Ahn, Tae-Kyu;Duoc, Buiquang;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-557
    • /
    • 2004
  • This paper presents a disturbance observer based on an $H_{\infty}$ controller synthesis for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, the hydraulic excavator has more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_{\infty}$ frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

  • PDF

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.

Task-Role-Based Access Control Model For Enterprise Environment (기업환경을 위한 과업-역할기반 접근제어 모델)

  • Oh, Se-Jong;Park, Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • There are many information objects and users in a large company. It is important issue how to control users access in order that only authorized user can access information objects, Traditional access control models do not properly reflect the characteristics of enterprise environment. This paper proposes an improved access control model for enterprise environment. The characteristics of access control in an enterprise are examined and a task role-based access control(T-RBAC) model founded on concept of classification of tasks is introduced. T-RBAC deals with each task differently according to its class, and supports task level access control and supervision role hierarchy.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.

Attitude Control of Model Helicopter using the LQR Controller (최적 LQR 제어기를 이용한 모형 헬리콥터의 자세 제어)

  • Han, Hak-Sic;Jeong, Sang-Chul;Kim, Gwan-Hyung;An, Young-Joo;Lee, Hyung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2171-2175
    • /
    • 2002
  • Helicopter dynamics are plenty of nonlinearity. A complete mathematical model including propeller dynamics and fortes generated by the propellers is very difficult to obtain. So the method used to design to design a controller is a parameter estimation. Design controller based on variable structure system. This paper deals with LQR control technique to control efficiently, its elevation angle and azimuth one. The purpose of the experiment is to design a controller allows to use a desired elevation angle and azimuth ones. The system model has a helicopter model with 2-degree-of freedom. The simulation results were verified usefulness of controller.

  • PDF

Development of a full-scale magnetorheological damper model for open-loop cable vibration control

  • Zhang, Ru;Ni, Yi-Qing;Duan, Yuanfeng;Ko, Jan-Ming
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • Modeling of magnetorheological (MR) dampers for cable vibration control to facilitate the design of even more effective and economical systems is still a challenging task. In this study, a parameter-adaptive three-element model is first established for a full-scale MR damper based on laboratory tests. The parameters of the model are represented by a set of empirical formulae in terms of displacement amplitude, voltage input, and excitation frequency. The model is then incorporated into the governing equation of cable-damper system for investigation of open-loop vibration control of stay cables in a cable-stayed bridge. The concept of optimal voltage/current input achieving the maximum damping for the system is put forward and verified. Multi-mode suboptimal and Single-mode optimal open-loop control method is then developed. Important conclusions are drawn on application issues and unique characteristics of open-loop cable vibration control using MR dampers.

A Model-based Test Approach and Case Study for Weapon Control System (모델기반 테스트 기법 및 무장통제장치 적용 사례)

  • Bae, Jung Ho;Jang, Bucheol;Koo, Bongjoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.688-699
    • /
    • 2017
  • Model-based test, a well-known method of the black box tests, is consisted of the following four steps : model construction using requirement, test case generation from the model, execution of a SUT (software under test) and detection failures. Among models constructed in the first step, state-based models such as UML standard State Machine are commonly used to design event-based embedded systems (e.g., weapon control systems). To generate test cases from state-based models in the next step, coverage-based techniques such as state coverage and transition coverage are used. Round-trip path coverage technique using W-Method, one of coverage-based techniques, is known as more effective method than others. However it has a limitation of low failure observability because the W-Method technique terminates a testing process when arrivals meet states already visited and it is hard to decide the current state is completely same or not with the previous in the case like the GUI environment. In other words, there can exist unrevealed faults. Therefore, this study suggests a Extended W-Method. The Extended W-Method extends the round-trip path to a final state to improve failure observability. In this paper, we compare effectiveness and efficiency with requirement-item-based technique, W-Method and our Extended W-Method. The result shows that our technique can detect five and two more faults respectively and has the performance of 28 % and 42 % higher failure detection probability than the requirement-item-based and W-Method techniques, respectively.

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

A Learning Algorithm for Optimal Fuzzy Control Rules (최적의 퍼지제어규칙을 얻기위한 퍼지학습법)

  • Chung, Byeong-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.399-407
    • /
    • 1996
  • A fuzzy learning algorithm to get the optimal fuzzy rules is presented in this paper. The algorithm introduces a reference model to generate a desired output and a performance index funtion instead of the performance index table. The performance index funtion is a cost function based on the error and error-rate between the reference and plant output. The cost function is minimized by a gradient method and the control input is also updated. In this case, the control rules which generate the desired response can be obtained by changing the portion of the error-rate in the cost funtion. In SISO(Single-Input Single- Output)plant, only by the learning delay, it is possible to experss the plant model and to get the desired control rules. In the long run, this algorithm gives us the good control rules with a minimal amount of prior informaiton about the environment.