• Title/Summary/Keyword: a model based control

Search Result 7,735, Processing Time 0.043 seconds

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

A Study on the Control of Nonlinear Dynamical System Using the Fuzzy Model Based Controller (퍼지 모델 기반 제어기를 이용한 비선형 동적 시스템의 제어에 관한 연구)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.181-184
    • /
    • 1997
  • This paper propose the systematic procedure of the fuzzy model based controller for the continuous nonlinear system. Fuzzy controller have been successfully applied to many uncertain and complex industrial plants. The design of the fuzzy controller mainly depends on the knowledge from the expert who are familiar with the plant by trial and error. Therefore we need more systematic approach to the design of the fuzzy controller. In this paper, we design fuzzy model based controller applied to the nonlinear system. Unlike the design procedures reported in[8] and[9], we use the nonlinear process directly in designing the controller. This controller has been successfully applied to an inverted pendulum.

  • PDF

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

A Role-Based Delegation Model Using Role Hierarchy with Restricted Permission Inheritance (권한상속제한 역할계층을 이용한 역할기반 위임 모델)

  • 박종순;이영록;이형효;노봉남;조상래
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.129-138
    • /
    • 2003
  • Role-Based Access Control(RBAC) model is becoming a promising model for enterprise environments with various organization structures. In terms of role hierarchy, each senior role inherits all the permissions of its junior roles in the role hierarchy, and a user who is a member of senior role is authorized to carry out the inherited permissions as well as his/her own ones. But there is a possibility for senior role members to abuse permissions. Since senior role members need not have all the authority of junior roles in the real world, enterprise environments require a restricted inheritance rather than a unconditional or blocked inheritance. In this paper, we propose a new role-based delegation model using the role hierarchy model with restricted inheritance functionality, in which security administrator can easily control permission inheritance behavior using sub-roles. Also, we describe how role-based user-to-user, role-to-role delegations are accomplished in the model and the characteristics of the proposed role-based delegation model.

An Enhanced Role-Based Access Control Model using Static Separation of Duty Concept

  • Yenmunkong, Burin;Sathitwiriyawong, Chanboon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1350-1354
    • /
    • 2004
  • This paper proposes a simple but practically useful model for preventing fraud of users called "ERBAC03". The new model consists of qualified mandatory and discretionary features for roles and locations, including the assignment of permissions for the appropriate roles and the assignment of roles for the appropriate locations. Moreover, a static separation of duty (SSoD) principle is applied to the new model for integrity requirements of security systems. The paper also explores some extensions of ERBAC03 including the new model using the SSoD concept from some experiments. The experimental results prove the efficiency improvement of the proposed model that can make benefits for large enterprises.

  • PDF

Permission-Based Separation of Duty Model on Role-Based Access Control (역할기반 접근제어 환경에서 접근권한 기반의 임무분리 모델)

  • Oh Se-Jong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.725-730
    • /
    • 2004
  • Separation of Duty(SOD), with delegation, is one of important security principles in access control area. The role-based access control model adopts SOD principle, but it has some problems; SOD concept is inconsistent with role hierarchy, permissions that have no relation with SOD may be restricted, and delegation may violate SOD. We propose permission-based SOD model on role-based access control. We establishes SOD as a set of permissions instead of role level SOD. Furthermore we propose a principle of role activation. It solves SOD problems of RBAC and supports easy implementation of SOD policy.

Internal Control Risk Assessment System Using CRAS-CBR

  • Hwang, Sung-Sik;Taeksoo Shin;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.338-346
    • /
    • 2003
  • Information Technology (IT) and the internet have been major drivers the changes in all aspects of the business processes and activities. They have brought major changes to the financial statements audit environment as well, which in turn has required modifications in audit procedures. There exist, however, certain difficulties with current audit procedures especially for the assessment of the level of control risk. This assessment is primarily based on the auditors' professional judgment and experiences, not based on the objective hies or criteria. To overcome these difficulties, this paper proposes a prototype decision support model named CRAS-CBR using case based reasoning (CBR) to support auditors in making their professional judgment on the assessment of the level of control risk of the general accounting system in the manufacturing industry. To validate the performance, we compare our proposed model with benchmark performances in terms of classification accuracy for the level of control risk. Our experimental results showed CRAS-CBR outperforms a statistical model (MDA) and staff auditor performance in average hit ratio.

  • PDF

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Simplified Model Predictive Control Method for Three-Phase Four-Leg Voltage Source Inverters

  • Kim, Soo-eon;Park, So-Young;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2231-2242
    • /
    • 2016
  • A simplified model predictive control method is presented in this paper. This method is based on a future reference voltage vector for a three-phase four-leg voltage source inverter (VSI). Compared with the three-leg VSIs, the four-leg VSI increases the possible switching states from 8 to 16 owing to a fourth leg. Among the possible states, this should be considered in the model predictive control method for selecting an optimal state. The increased number of candidate switching states and the corresponding voltage vectors increase the calculation burden. The proposed technique can preselect 5 among the 16 possible voltage vectors produced by the three-phase four-leg voltage source inverters, based on the position of the future reference voltage vector. The discrete-time model of the future reference voltage vector is built to predict the future movement of the load currents, and its position is used to choose five preselected vectors at every sampling period. As a result, the proposed method can reduce calculation load by decreasing the candidate voltage vectors used in the cost function for the four-leg VSIs, while exhibiting the same performance as the conventional method. The effectiveness of the proposed method is demonstrated with simulation and experiment results.