• 제목/요약/키워드: a model based control

검색결과 7,709건 처리시간 0.044초

차량전복 방지를 위한 통합섀시제어 (Unified Chassis Control to Prevent Vehicle Rollover)

  • 윤장열;이경수;조완기;김동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

A Multi-target Tracking Algorithm for Application to Adaptive Cruise Control

  • Moon Il-ki;Yi Kyongsu;Cavency Derek;Hedrick J. Karl
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1742-1752
    • /
    • 2005
  • This paper presents a Multiple Target Tracking (MTT) Adaptive Cruise Control (ACC) system which consists of three parts; a multi-model-based multi-target state estimator, a primary vehicular target determination algorithm, and a single-target adaptive cruise control algorithm. Three motion models, which are validated using simulated and experimental data, are adopted to distinguish large lateral motions from longitudinally excited motions. The improvement in the state estimation performance when using three models is verified in target tracking simulations. However, the performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. The MTT-ACC system is tested under lane changing situations to examine how much the system performance is improved when multiple models are incorporated. Simulation results show system response that is more realistic and reflective of actual human driving behavior.

Auto-Tuning of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.246-254
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied for a Process control system by immune algorithm. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. Also, a number of approaches have been proposed to implement mixed control structures that combine a PID controller with fuzzy logic. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Since the immune system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (Parallel Distributed Processing) network to complete patterns against the environmental situation. Simulation results reveal that reference model basd tuning by immune network suggested in this paper is an effective approach to search for optimal or near optimal process control.

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

복합 퍼지모델을 이용한 디맨드 예측 제어에 관한 연구 (A Study on the Demand Forecasting Control using A Composite Fuzzy Model)

  • 김창일;성기철;유인근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.417-424
    • /
    • 2002
  • This paper presents an industrial peak load management system for the peak demand control. Kohonen neural network and wavelet transform based techniques are adopted for industrial peak load forecasting that will be used as input data of the peak demand control. Firstly, one year of historical load data of a steel company were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are applied with Biorthogonal 1.3 mother wavelet in order to forecast the peak load of one minute ahead. In addition, for the peak demand control, composite fuzzy model is proposed and implemented in this work. The results are compared with those of conventional model, fuzzy model and composite model, respectively. The outcome of the study clearly indicates that the composite fuzzy model approach can be used as an attractive and effective means of the peak demand control.

A Passivity-Based Control for a Crane System Without Velocity Measurements

  • Young I. Son Son;Lim, Young-Do;Park, Bu-Gwi;Hyungbo Shim;Nam H. Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.60.2-60
    • /
    • 2002
  • $\textbullet$ Contents 1: Introduction to nonlinear crane model $\textbullet$ Contents 2: Passivity of the crane model $\textbullet$ Contents 3: PD-Control based on the passivity $\textbullet$ Contents 4: Global regulation of the system without the velocity measurement $\textbullet$ Contents 5: Simulation studies for the performance test

  • PDF

모델기반 시스템 설계 방법을 이용한 용접로봇의 상부아키텍쳐 정의에 관한 연구 (A Study on Architecting Method of a Welding Robot Using Model-Based System Design Method)

  • 박영원;김진일
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.152-159
    • /
    • 2005
  • This paper describes the application of a model-based system design method critical to complex intelligent systems, PSARE, to a welding robot development to define its top level architecture. The PSARE model consists of requirement model which describes the core processes(function) of the system, enhanced requirement model which adds technology specific processes to requirement model and allocates them to architecture model, and architecture model which describes the structure and interfaces and flows of the modules of the system. This paper focuses on the detailed procedure and method rather than the detailed domain model of the welding robot. In this study, only the top level architecture of a welding robot was defined using the PSARE method. However, the method can be repeatedly applied to the lower level architecture of the robot until the process which the robot should perform can be clearly defined. The enhanced data flow diagram in this model separates technology independent processes and technology specific processes. This approach will provide a useful base not only for improvement of a class of welding robots but also for development of increasingly complex intelligent real-time systems.

신경회로망을 이용할 모델 기반 학습 제어기의 설계 (A Design of Model-Based Leaming Controller using Artificial Neural Networks)

  • 노철래;김성도;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.401-403
    • /
    • 1992
  • For the control of robotic manipulators with unknown or uncertain dynamics, leaming control schemes are very effective control schemes for repeated trajectory following tasks. In this class of controllers, control techniques using neural networks have been gaining much attention in recent years.. In this note, we discuss the leaming control techniques using neural networks and propose a new model-based control scheme using multilayered neural networks. Three-layerd neural network is used as a feedback controller to compensate the mismatched terms between model plant and real plant. Computer simulations are performed to show the applicability and the limitation of the proposed controller.

  • PDF

새로운 MRAS에 의한 유도전동기의 센서리스 속도제어 (Novel MRAS Based Sensorless Speed Control of Induction Motor)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF

어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어 (Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine)

  • 정상화;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF