• Title/Summary/Keyword: a loop shaping

Search Result 110, Processing Time 0.025 seconds

Torque shaping for near-minimum-time optimal slewing of 3-axis spacecraft (3축 위성체의 준최소시간 선회기동을 위한 입력형상최적화)

  • 김기석;김희섭;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1330-1333
    • /
    • 1997
  • In this paper, the optimal torque shaping is obtained for 3-axis rotation of a spacecraft. The true optimal 3-axis rotation of rigid spaeraft is first investigated via parameter optimization method with prescribed switching times. Input torque shape of the troque generating device mounted on the central hub is optimized using fourier Series expansion so that the spacecraft may slew while minimizing the vibration energy of flexible modes. Numerical results show that proposed method suggests a reference trahectory for open-loop control, and also verify that it can minimize the vibratory modes of the spacecraft during/after the rest-to-rest maneuver.

  • PDF

Folded-Loop Guidewire Remodeling Technique: Catheterizing Markedly Angulated Branches during Intravascular Embolization (Folded-Loop Guidewire Remodeling Technique: 색전술 시 급격한 분지 각도를 가지는 혈관의 선택적 진입 방법)

  • Dong Hyun Kim;Ung Rae Kang;Young Hwan Kim;Jung Guen Cha
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.2
    • /
    • pp.418-426
    • /
    • 2023
  • Purpose Practical challenges are encountered in percutaneous intravascular procedures when applied to markedly angulated branching vessels. Herein, we introduced a folded-loop guidewire remodeling technique-the guidewire-shaping technique-to overcome difficult catheterization. Materials and Methods First, the tip of a 0.014-inch micro-guidewire was manually shaped like a pigtail loop. Second, the shaped guidewire was introduced into the microcatheter and was preloaded into the hollow metal introducer for suitability with the microcatheter hub. Gentle rotation of the guidewire after release from the microcatheter can create the preshaped pigtail loop configuration. On pulling back, the loop loosened, the configuration was changed to a small U-shaped tip, and the guidewire tip was easily introduced into the target artery. Results Between December 2019 and January 2022, the described technique was used in 64 patients (male/female, 49/15; mean age, 66.8 ± 9.5 years) for selective arterial embolization, after failed attempts with the conventional selection technique. The technique was successful in 63/64 patients (98%). The indications of embolization include transcatheter arterial chemoembolization, gastrointestinal bleeding, hemoptysis, trauma-induced bleeding, and tumor bleeding. Conclusion The folded-loop guidewire remodeling technique facilitates the catheterization of markedly angulated branching arteries; when usual catheterization method fails.

Design and Performance Analysis of Non-coherent Code Tracking Loops for HSDPA MODEM (HSDPA 모뎀용 동기추적회로의 설계 및 성능분석)

  • Yang, Yeon-Sil;Park, Hyung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.6-13
    • /
    • 2003
  • In this paper, a non-coherent code tracking loop is designed for 3GPP HSDPA MODEM and its performance is analyzed in terms of steady-state jitter variance and transient response characteristics. Analytical closed-form formula for steady-state jitter variance is first derived for AWGN environments as a function of pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth. Also obtained is the transient response characteristic of a tracking loop. Finally, the performance of the designed tracking loop is confirmed by computer simulations.

  • PDF

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

Development of In-Process Polishing Pressure Control System (실시간 폴리싱 압력 제어시스템 개발)

  • 오창진;전문식;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.109-115
    • /
    • 2004
  • Polishing process has been applied to get extremely fine surfaces, e.g., mirror surfaces such as optical mirrors, lens, molds and etc. Nowadays not only fine surface quality but also submicron order of dimensional accuracy is required for many applications. To meet the requirements polishing process should be provided with an active control of polishing pressure especially for automation of polishing process. In this paper a study on development of an active polishing pressure control system has been presented. A new type of tool assembly has been developed to facilitate the control. The tool is attached to an axis of a polishing machine with a coil spring and control of the polishing pressure is done by the position control of the axis, which needs no additional actuator. The polishing pressure is successfully measured by the measurement of the spring deformation. Control specifications were quantitatively considered by weighting functions and a controller was designed by using loop-shaping technique based on the no synthesis. Some experiments have been executed on a polishing machine with a PC-NC controller. It is shown that the results were coincident well with the theoretical analyses and satisfied the design specifications.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Optimal Design of Power System Stabilizer Using IA-QFT (IA-QFT를 이용한 전력계통 안정화 장치의 최적 설계)

  • Jeong, Hyeong-Hwan;Lee, Jeong-Pil;Jeong, Mun-Gyu;Ju, Su-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.441-450
    • /
    • 2002
  • In this paper, optimal tuning problem of power system stabilizer using IA-QFT is investigated to improve power system dynamic stability in spite of parameter variation and disturbance uncertainties. The most important feature of QFT is that it is able to deal with the design problem of complicated uncertain plants. However, loop shaping is currently performed in computer aided design environments manually and it is usually a trial and error procedure. It is difficult to design a controller to satisfy all specifications manually. To solve this problem, a study of design automation using IA needs to be taken into account. The robustness of the proposed controller has been investigated on a single machine infinite bus model. The results are shown that the proposed PSS using IA-QFT is more robust than conventional PSS.

An improved Loop Shaping Approach of QFT using Genetic Algorithm and a Design of Steam Generator Water Level Control System in Nuclear Power Station (유전 알고리듬을 이용한 개선된 QFT의 루프 형성법 및 원전 증기발생기 수위제어계의 설계)

  • 김주식;김민환;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.106-113
    • /
    • 1998
  • The steam generator waste level control system in a nuclear power station has difficulty in its mathematical modeling and theoretical application in both a transient and steady state operation. Therefore, the stability problem of the conventional control methods brings many researches interests to the various methods of a system design in recent years. In this study, an improved loop shaping approach is proposed by applying the genetic algorithm to QFT (Quantitative Feedback Theory) in designing a control system in order to the performance of the system. And the effects of the proposed methods are shown by the simulation results.

  • PDF

A Design of the Robust Controller for Stabilization of the Unstable System Using QFT(Quantitative Feedback Theory) (QFT(Quantitative Feedback Theory)를 이용한 불안정한 시스템의 안정화를 위한 강인 제어기 설계)

  • 강민구;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.57-64
    • /
    • 2001
  • This paper propose a robust control method to achieve a desired system performance in spite of system uncertainty and disturbance uncertainty. The procedures of the robust controller based on QFT(Quantitative Feedback Theory) make template, bound and loop shaping which are considered by system parameter variations and performance specifications. To prove the efficiency, the designed controller is applied for an inverted pendulum which is so sensitive to the parameter variation and has a highly nonlinear and unstable characteristics. It is shown that the simulation and experimental results from the proposed controller are efficient in robustness of parameter variation and disturbance.

  • PDF