• Title/Summary/Keyword: a learning control

검색결과 3,410건 처리시간 0.033초

로봇의 궤적추종제어를 위한 직접학습 제어법칙의 구현 (Implementation of a Direct Learning Control Law for the Trajectory Tracking Control of a Robot)

  • 김진형;안현식;김도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.694-696
    • /
    • 2000
  • In this paper, the Direct Learning Control is applied to robot's trajectory tracking control to solve the problem that lies in the existing Iterative Learning Control(ILC) and the tracking Performance is analyzed and the better approach is searched using computer simulation and experiments. It is assumed that the Direct Learning Control(DLC) is saved onto memory basically after obtaining control input Profiles for several Periodic output trajectories using the ILC. In case the new output trajectory has special relations with the previous output trajectories, there is an advantage that the desired control input profile can be obtained without iterative executions only using the DLC. The robot's tracking control system is comprised of DSP chip. A/D converter, D/A converter and high-speed pulse counter included in the control board and the performance is examined by carrying out the tracking control for the given output trajectory.

  • PDF

2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구 (A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion)

  • 노연 후 콩;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토 (Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

Neuro-controller design with learning rate modification for the line of sight stabilization system

  • Jang, Jun-Oh;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.395-400
    • /
    • 1993
  • This paper presents an application of back propagation neural network to the tracking control of line of sight stabilization system. We design a neuro-control system having two neural networks one for learning system dynamics and the other for control. We use a learning method which adjusts learning rate and momentem as a function of plant output error and error change.

  • PDF

불안정한 다변수 시스템에 대한 퍼지 학습제어 (Fuzzy Learning Control for Multivariable Unstable System)

  • 임윤규;정병묵;소범식
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.808-813
    • /
    • 1999
  • A fuzzy learning method to control an unstable and multivariable system is presented in this paper, Because the multivariable system has generally a coupling effect between the inputs and outputs, it is difficult to find its modeling equation or parameters. If the system is unstable, initial condition rules are needed to make it stable because learning is nearly impossible. Therefore, this learning method uses the initial rules and introduces a cost function composed of the actual error and error-rate of each output without the modeling equation. To minimize the cost function, we experimentally got the Jacobian matrix in the operating point of the system. From the Jacobian matrix, we can find the direction of the convergence in the learning, and the optimal control rules are finally acquired when the fuzzy rules are updated by changing the portion of the errors and error rates.

  • PDF

변분법을 이용한 재귀신경망의 온라인 학습 (A on-line learning algorithm for recurrent neural networks using variational method)

  • 오원근;서병설
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

Design of learning flight control system via input matching

  • Uchikado, Shigeru;Kanai, Kimio;Osa, Yasuhiro;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.364-367
    • /
    • 1995
  • In this paper, a design method of learning flight control system via input matching is proposed. The proposed learning control system is a simple structure which has an artificial neural network and feedback mechanism, and it is a useful method to control nonlinear systems.

  • PDF

동적 환경에서 강화학습을 이용한 다중이동로봇의 제어 (Reinforcement learning for multi mobile robot control in the dynamic environments)

  • 김도윤;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.944-947
    • /
    • 1996
  • Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.

  • PDF

학습코칭 프로그램이 방과후아카데미 고학년 아동의 자기효능감 및 자기주도학습능력에 미치는 효과 (The Effect of Learning Coaching Program on Self-Efficacy and Self-Directed Learning Ability of Youth-After-School-Academy Children)

  • 김종운;정보현
    • 수산해양교육연구
    • /
    • 제24권2호
    • /
    • pp.146-165
    • /
    • 2012
  • The purpose of this study is development of learning coaching program that is grafted onto advantage of Self-directed learning and coaching intended for Youth-After-School-Academy children and analysis the effect on self-efficacy and Self-directed learning ability from this program. The program of this study is developed on the base of Seels & Richey's 'ADDIE Model'. In order to verify the effect of this study, two times tests were carried out on 14 persons of the experimental group and the control group respectively, before and after the program was performed. The MANCOVA & ANCOVA was done on the difference between the post-test results of the experimental group and the control group. Findings of this study might be summarized as follows: First, the post-test result in the experimental group on self-efficacy was meaningfully higher than in the control group. Second, on Self-directed learning ability the result in the experimental group was also higher than in the control group. Therefore, learning coaching program impacted on self-efficacy and Self-directed learning ability of Youth-After-School-Academy children. This program that aim to discover the potential on learning, expect to be effective for children education of today when pursue Self-directed learning ability and creativity.