• Title/Summary/Keyword: a joint tracking

Search Result 298, Processing Time 0.024 seconds

A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method (적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구)

  • 허남수;한성현;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

3D Hand Tracking Method Using the Range of Fingers Joint Motion and MediaPipe (손가락 관절 운동범위와 MediaPipe를 이용한 3 차원 손 추적 방법)

  • Yun, Hee-Heon;Jung-Min Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.752-753
    • /
    • 2023
  • 본 논문에서는 손가락 관절의 운동범위와 MediaPipe 손 추적기를 이용하여 3 차원 손 추적 방법을 설계하였다. MediaPipe 손 추적기가 추정한 신뢰할 수 있는 2 차원 좌표를 바탕으로 손 랜드마크의 깊이를 추정한 후, 손가락 관절 운동범위와 부합한 결과를 도출하였다. 본 논문에서 제안한 3 차원 손 추적 방법은 전용 하드웨어 없이 동작하며 기존의 3 차원 손 추적기에 비해 보다 직관적인 인간-컴퓨터 인터페이스 확산에 긍정적 영향을 줄 것으로 기대한다.

Vision-based Joint Defect Tracking by Motion Fault Diagnosis of Collaborative Robots (협동로봇 동작 오류 진단을 통한 비전 기반 조인트 결함 추적 기법)

  • Hui-Chan Yang;Jinse Kim;Dong-Yeon Yoo;Jung-Won Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.595-596
    • /
    • 2023
  • 스마트팩토리의 핵심 설비 기기인 협동로봇의 유지보수를 위해 다양한 센서 데이터를 활용한 딥러닝 기반 결함 진단 연구가 확대되고 있다. 하지만 협동로봇은 기계적 특성과 수행하는 작업의 다양성으로 인해 내부 센서 데이터의 복잡도가 매우 높아 고정적인 결함 진단 기법을 적용하기 어렵다. 따라서 본 논문은 협동로봇의 동작 패턴을 직관적이고 신속하게 인지할 수 있는 비전 기술을 활용하여, 동작 오류 진단을 기반으로 원인이 되는 조인트 결함 위치를 추적하는 딥러닝 기법을 제안한다.

Optimized design of Jansen mechanism based on target trajectory tracking method using multi-objective genetic algorithm (Multi-objective Genetic Algorithm 을 이용한 얀센 메커니즘의 목표 궤적 트래킹 기반 최적 설계)

  • Heo, Joon;Hur, Youngkun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.455-462
    • /
    • 2016
  • Recently, followed by rapid growth of robotics field, multi-linkage mechanism which can even pass by rough road is getting lots of attention. In this paper, I focused on Jansen mechanism. It's a kinematics object which is named after Dutch artist Theo jansen. Jansen mechanism embraces structure and mechanism which creates locomotion with the combination of the power and simple structure. Theo jansen suggests a 'Holy number'. It's an ideal ratio of leg components length. However, if there's desired gait locomotion, you have to adjust the ratio and the length. But even slight change of the length could cause a big change at the end-point. To solve this problem, I suggest a reverse engineering method to get a ratio of each links by nonlinear optimization with pre-set desired trajectory. First, we converted a movement of the joint of Jansen mechanism to vectors by kinematics analysis of multi-linkage structure. And we showed the trajectory at the end-point. After that, we set desired trajectory which we found most ideal. Then we got the length of the leg components which draws a trajectory as same as trajectory we set, using Multi-objective genetic algorithm toolbox in MATLAB. Result is verified by Edison designer and mSketch. And we analyzed if it could pass through the obstruction which is set dynamically.

  • PDF

B-COV:Bio-inspired Virtual Interaction for 3D Articulated Robotic Arm for Post-stroke Rehabilitation during Pandemic of COVID-19

  • Allehaibi, Khalid Hamid Salman;Basori, Ahmad Hoirul;Albaqami, Nasser Nammas
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • The Coronavirus or COVID-19 is contagiousness virus that infected almost every single part of the world. This pandemic forced a major country did lockdown and stay at a home policy to reduce virus spread and the number of victims. Interactions between humans and robots form a popular subject of research worldwide. In medical robotics, the primary challenge is to implement natural interactions between robots and human users. Human communication consists of dynamic processes that involve joint attention and attracting each other. Coordinated care involves sharing among agents of behaviours, events, interests, and contexts in the world from time to time. The robotics arm is an expensive and complicated system because robot simulators are widely used instead of for rehabilitation purposes in medicine. Interaction in natural ways is necessary for disabled persons to work with the robot simulator. This article proposes a low-cost rehabilitation system by building an arm gesture tracking system based on a depth camera that can capture and interpret human gestures and use them as interactive commands for a robot simulator to perform specific tasks on the 3D block. The results show that the proposed system can help patients control the rotation and movement of the 3D arm using their hands. The pilot testing with healthy subjects yielded encouraging results. They could synchronize their actions with a 3D robotic arm to perform several repetitive tasks and exerting 19920 J of energy (kg.m2.S-2). The average of consumed energy mentioned before is in medium scale. Therefore, we relate this energy with rehabilitation performance as an initial stage and can be improved further with extra repetitive exercise to speed up the recovery process.

Joint Space Trajectory Planning on RTOS (실시간 운영체제에서 관절 공간 궤적 생성)

  • Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • This paper presents an implementation of a smooth path planning method considering physical limits on a real time operating system for a two-wheel mobile robot. A Bezier curve is utilized to make a smooth path considering a robot's position and direction angle through the defined path. A convolution operator is used to generate the center velocity trajectory to travel the distance of the planned path while satisfying the physical limits. The joint space velocity is computed to drive the two-wheel mobile robot from the center velocity. Trajectory planning, velocity command according to the planned trajectory, and monitoring of encoder data are implemented with a multi-tasking system. And the synchronization of tasks is performed with a real-time mechanism of Event Flag. A real time system with multi-tasks is implemented and the result is compared with a non-real-time system in terms of path tracking to the designed path. The result shows the usefulness of a real-time multi-tasking system to the control system which requires real-time features.

Study of an Optical Goniometer Using a Multi-Photodiode Sensor

  • Kim, Ji-Sun;Kim, A-Hee;Oh, Han-Byeol;Kim, Jun-Sik;Goh, Bong-Jun;Lee, Eun-Suk;Choi, Ju-Hyeon;Baek, Jin-Young;Jun, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • The monitoring and measurement of the motion of a human joint is very important in screening for degenerative brain diseases and tracking the rehabilitation process. Since there are various medical fields to benefit from angular motion measurement, the necessity for monitoring of human joint movement is increasing. In this study, the optical sensor is composed of a light emission unit with a red LED and an optical fiber, and a reception unit with an arrangement of three photodiodes. The angular detection range was widened with the use of multiple photodiodes and the developed algorithm. The result will be useful for designing an effective angular sensor with low cost and small size.

Intelligent Digital Control of a Single Link Flexible-Joint Robot with Uncertainties (불확실성을 갖는 단일 링크 유연로봇의 지능형 디지털 제어)

  • Jang Kwon Kyu;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.318-323
    • /
    • 2005
  • In this paper, we propose a systematic method of a fuzzy-model-based controller for continuous-time nonlinear dynamical systems which may contain uncertainties. The continuous-time uncertain TS fuzzy model is first constructed to represent the uncertain nonlinear system. A parallel distributed compensation (PDC) technique is then used to design a fuzzy model based controller for both stabilization and tracking. Finally, the designed continuous-time controller is converted to an equivalent discrete-time controller by using an intelligent digital redesign method. This new design technique provides a systematic and effective framework for integration of the fuzzy model based control theory and the advanced digital redesign technique for nonlinear dynamical systems with uncertainties. Finally, the single link flexible-joint robot arm is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.

A Convergence Research for Development of VR Education Contents for Core Fundamental Nursing Skills (핵심기본간호술 VR 교육 콘텐츠 개발을 위한 융복합 연구)

  • Kim, Jungki;Yu, Hye-Yon;Lee, Young-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.714-722
    • /
    • 2021
  • In this study, intends to propose virtual reality education contents for fundamental nursing skills to develop various teaching methods in nursing education. Blood sugar test & insulin subcutaneous injection among the 20 core fundamental nursing skills is one of that frequently performed and can be used for self-management education for diabetic patients. This study designed a core fundamental nursing skill on immersive VR contents by dividing the learner's experience into three stages: guide, mission, and feedback with these skills. And it is designed by tracking the movement of the hand through finger joint recognition without using a controller for immerse in training. This study will help develop VR nursing education contents that can improve clinical practice competency and the effect of the nursing education.