• Title/Summary/Keyword: a impedance estimation

Search Result 175, Processing Time 0.039 seconds

A Study on Estimation Method for Physical Properties of Sound Absorbing Materials (다공성 재료의 물리적 성질 추정 방법에 대한 연구)

  • Kim, Yoon-Jae;Kang, Yeon-June;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.118-121
    • /
    • 2005
  • The acoustical performance of porous materials is determined by their seven or more macroscopic physical properties. However, it is not easy to measure all these properties in many cases. Furthermore, the measurement is compels engineers to spend much times. The effect of each property on the normal incidence absorption coefficient and normalized surface impedance was studied to estimate the properties of porous materials by numerical method. According to the investigation, Properties of porous materials are divided into several groups and estimated by each group. This paper is focused on the estimation procedure of porous materials by the numerical method.

  • PDF

A Study On The Methods Of Signal Processing For High Impedance Fault Detection (고저항 지락사고 검출을 위한 신호처리 방법에 관한 연구)

  • Lee, Sung-Hwan;Woo, Chun-Hee;Kang, Sin-Jun;Woo, Kwang-Bang;Lee, Jin;Kim, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.156-158
    • /
    • 1993
  • This paper presents several techniques of power spectrum estimation for high impedance fault detection. High impedance faults are those faults with current too low to be reliably cleared by conventional overcurrent protection. So power spectrum estimation is required. AR and MA techniques require optimal order for good performance of power spectrum estimation because these techniques are unstable for order selection. ARMA and Extended techniches are stable for order selection and have very sharp response. So ARMA and Extended Prony techniques are suitable for our purpose.

  • PDF

A Study on Deicing Current Estimation Technique and Configuration Process for Deicing System in the Conventional Line (기존선 해빙시스템을 위한 해빙전류 예측기법 및 구성 절차에 관한 연구)

  • Kwon, Sam-Young;Park, Young;Jung, Ho-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.237-243
    • /
    • 2006
  • Deicing system is to melt frost or ice freezed in catenary line when the temperature is lower than $0^{\circ}C$ in winter. The principle of deicing system is to melt frost or ice by Joule heat of catenary impedance. The performance of deicing is dependant of deicing current determined by the length of deicing section, deicing impedance and current division ratio of catenary line and messenger line. So, we present technique for estimating deicing current and process for determination of deicing section in the conventional line. Deicing impedance is estimated using Carson-Pollaczek equation, and current division ratio of catenary line and messenger line is estimated using voltage drop, and deicing current is estimated using power system data of deicing system. For the determination of the final deicing section, we verified estimated value comparing with experiment value of deicing impedance and current division ratio of catenary line and messenger line using low voltage experiment. Finally, we verified the validity of estimation technique and process using a simulated test data of real deicing system operation in the Chungju Substation, Chungbuk line.

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

256-Channel Trans-Admittance Scanner with Lesion Estimation Algorithm for Breast Cancer Detection

  • Oh, Tong-In;Kim, Kyu-Sik;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • Breast cancer detection using electrical impedance techniques is based on numerous experimental findings that cancerous tissues have higher electrical conductivity values than normal tissues. Lately, by taking advantage of the structure of current flows underneath a planar probe of array electrodes, a mathematical formula to find lesions from a measured trans­admittance map has been derived. In order to experimentally validate its mathematical analysis and the suggested lesion estimation algorithm, we developed a 256-channel trans-admittance scanner (TAS) for probing anomalies underneath a planar array of electrodes. In this paper, we describe the design and implementation of the TAS. Its performance together with the lesion estimation algorithm was evaluated using saline phantoms. Further studies are proposed to validate the system on human subjects.

Modified Quasi Newton algorithm for boundary estimation in Electrical Impedance Tomography

  • Hwang, Sang-Pil;Jeon, Hae-Jin;Kim, Jae-Hyoung;Lee, Seung-Ha;Choi, Bong-Yeol;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.32-35
    • /
    • 2004
  • In boundary estimation in Electrical Impedance Tomography (EIT), conventional method is the modified Newton Raphson (mNR) method .The mNR is famous for good method since has good convergence and robustness against noisy data. But the mNR is low efficiency to get and update Jacobian matrix. So, the mNR become very slow algorithm. We propose the Quasi Newton (QN) method to improve efficiency which will lead to speed up in boundary estimation. The QN can improve a low efficiency by using estimated Jacobian matrix contrary to using exactly calculated Jacobian matrix, this used by the mNR. And finally, we propose the modified Quasi Newton (mQN) method because the QN has some problems such as bad early convergence rate and instability of 'divided by zero'. For the verification of the propose method, numerical experiments are conducted and the results show a good performance.

  • PDF

A Straightforward Estimation Approach for Determining Parasitic Capacitance of Inductors during High Frequency Operation

  • Kanzi, Khalil;Nafissi, Hanidreza R.;Kanzi, Majid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.339-353
    • /
    • 2014
  • A straightforward method for optimal determining of a high frequency inductor's parasitic capacitance is presented. The proposed estimation method is based on measuring the inductor's impedance samples over a limited frequency range bordering on the resonance point considering k-dB deviation from the maximum impedance. An optimized solution to k could be obtained by minimizing the root mean squared error between the measured and the estimated impedance values. The model used to provide the estimations is a parallel RLC circuit valid at resonance frequency which will be transferred to the real model considering the mentioned interval of frequencies. A straightforward algorithm is suggested and programmed using MATLAB which does not require a wide knowledge of design parameters and could be implemented using a spectrum analyzer. The inputs are the measured impedance samples as a function of frequency along with the diameter of the conductors. The suggested algorithm practically provides the estimated parameters of a real inductance model at different frequencies, with or without design information. The suggested work is different from designing a high frequency inductor; it is rather concentration of determining the parameters of an available real inductor that could be easily done by a recipe provided to a technician.

Cuckoo search optimization algorithm for boundary estimation problems in electrical impedance tomography

  • Minho Jeon;Sravan Kumar Konki;Anil Kumar Khambampati;Kyung Youn Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.187-198
    • /
    • 2024
  • Estimating the phase boundary in two-phase flow is crucial for designing and optimizing industrial processes. Electrical impedance tomography (EIT) is a promising technique for imaging phase distribution in such flows. This paper proposes using a cuckoo search (CS) optimization algorithm to estimate the phase boundary with EIT. The boundary is parameterized using the Fourier series, and the coefficients are determined by the CS algorithm. The CS algorithm iteratively seeks the phase boundary configuration by minimizing a cost function. Computer simulations and phantom experiments demonstrate the effectiveness of this method in estimating phase boundaries in two-phase flow.

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

Estimation Method for Power Distribution Network of Impedance Characteristic on Printed Circuit Board (PCB상의 전력 배분망 설계를 위한 임피던스 계산법)

  • Cho Tae-ho;Park Joong-Ho;Baek Jong-Humn;Kim Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • This paper proposes a new methodology for the estimation of impedance characteristics, which is one of the important issue in the power distribution network design of printed circuit boards. The modeling process of the proposed method divides the power distribution network into uniform segment, and each segment is modeled by distributed RLC transmission lines. Then, for the efficient computation of impedance characteristics in frequency domain. the proposed method uses a model-order reduction method.