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Abstract

Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance 

tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly 

nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The 

subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; 

therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer 

boundary interface. Each layer interface boundary is treated as an open boundary that is described using front 

points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, 

conventional methods such as the modified Newton Raphson method fail to provide the desired solution. 

Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem 

algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting 

of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using 

training data that consists of pairs of voltage measurements of the subsurface domain with three-layer 

configuration and the corresponding front points of interface boundaries. The results from the proposed ANN 

model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the 

results show that ANN is successful in estimating the layer boundaries with good accuracy.
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Ⅰ. Introduction

Geophysical methods are used for exploration

of petroleum, gases, groundwater, minerals and

investing waste contamination as well [1]-[5]. It is

also used for the investigation and understanding

of the subsurface structure, layers, and composition.

Ground-penetrating radar (GPR) [6] and electrical

resistivity tomography (ERT) [7] are the geophysical

methods used for the exploration of the subsurface.

GPR method is expensive when compared with

ERT for the subsurface survey.

The subsurface structures are in different shapes

and, sizes and are hard to estimate in a complex

environment. Subsurface is a composition of the

soil, minerals, water, etc. The physics of electrical
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current flow in the soil suggests the relationship

between electrical resistivity and soil strength.

The relationship between electrical resistivity

and soil strength changes based on the clay

content in the soil [8]. The soil moisture often

influences the electrical conductivity [9], [10].

The subsurface electrical properties are generally

obtained using borehole and surface measurement

technique [11]. These measurement techniques

are implemented either together or separately

when reconstructing the electrical conductivity

by electrical resistivity tomography (ERT) [12]

or electrical impedance tomography (EIT).

The borehole technique is a well-based sampling

method, used for direct sample collection. It

provides discrete information, and more sampling

wells are needed to investigate the large area.

Sometimes, the wall rock can collapse into the

holes if the casing is not done. Due to these

reasons, the implementation of the borehole

technique tends to become expensive for the

implementation. Whereas in the surface measurement

technique, wells are not required for the

measurement. It is executed with the electrode

array being placed on the surface of the domain.

Since there are no wells, the surface measurement

method can measure a large area in less time

and cost. But to validate the output of surface

measurement, few wells are drilled.

A resistivity contrast between different layers

of the subsurface makes the detection and

recognition possible in the electrical geophysical

method. An electrical survey method is conducted

by a non-invasive method known as electrical

resistance tomography or electrical impedance

tomography (EIT). Electrical impedance tomography

(EIT) reconstructs the cross-sectional image of

the conductivity distribution of the area under

study [13], [14]. EIT has been implemented in

many fields such as the study of petroleum

product reservoir monitoring, process flow monitoring,

underground pollutants, aquifer detection, breast

cancer detection, lung function monitoring, and

others [15]-[19]. In EIT, the electrodes are placed

on the surface of the domain equidistantly. These

electrodes are used to inject the current and

measured the corresponding electric potential.

The conductivity contrast between the different

subsurface layers generates the different voltage

readings on the different electrodes. This numerical

calculation is normally done with the fnite element

method [20]-[22] and boundary element method

[23]-[26]. However, boundary element method

involves additional computation of fluxes on the

inclusion boundary and potential on the electrode

surface; thus, it is much more computationally

intensive [27] due to which finite element method

is preferred.

The different voltage measurement reading

obtained from numerical calculation is then used

to estimate the pixel conductivity distribution of

the subsurface. The material size, shape and,

location in the subsurface can be estimated from

the reconstructed EIT image.

Since the EIT suffers from the ill-posedness

problem, reconstructed conductivity image has a

low spatial resolution [28][29]. A common method

to overcome the low spatial resolution of EIT is

to decrease the number of unknowns to estimate

with incorporating the available prior information

into the solution. The conductivity distribution

within the layers can be assumed as piece-wise

constant and known a priori. The unknowns can

be the location and shape of the interface

boundary between layers. A borehole technique

can be performed before the electrical survey to

know the characteristics of subsurface layers.

The information obtained from the borehole

technique can be used as a priori information for

estimating the interlayer boundary using EIT.

The subsurface domain comprises disjoint layer

regions separated by an interfacial boundary.

The interfacial boundary between layers is

described by front points [30] from the horizontal

reference surface and are the unknowns to be

estimated using EIT. The material conductivity
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Fig. 1. A subsurface FEM mesh used in the study.

information obtained from the borehole technique

can be used as a priori information for estimating

the interlayer boundary using EIT. Different

layers are combined to form a subsurface domain,

and the interlayer boundary represents the open

boundary, and the domain is divided into separate

disjoint regions. Other method to defne the shape

or the boundaries are also studied with electrical

impedance tomography such as Fourier series

[31], level set method [32], and B-spline-based

method [33].

Normally, modified Newton Raphson (mNR)

algorithm is used as a standard inverse solver

algorithm for the EIT. An mNR algorithm heavily

depends on the initial guess and the Jacobian

matrix. Due to this dependency, the mNR algorithm

tends to have intersecting boundaries in the

complex domain. The performance of the mNR

algorithm has been evaluated against gravitational

search algorithm which out perform mNR [34].

Recently, the study on the artifcial neural network

has increased by ten folds and has been implemented

in many research work such as image recognition,

natural, language processing, medical application,

etc [35]. Neural Network has also been used with

EIT and implemented in many research work

such as estimating bladder boundary for medical

application [36], estimating aquifer location for

geophysics application [37], in a robotic tactile

sensor [38], etc.

In this work, ANN model has been proposed as

an inverse problem algorithm to estimate the

interlayer boundary of the subsurface using EIT.

The front points is used to define the boundary

between the different layers of the subsurface.

Here we assume that each layer’s conductivity is

homogeneous within itself. The interlayer boundary

estimation of the subsurface is done using the

ANN model. An ANN model is trained using a

dataset containing different scenarios of the

measurement voltage and the known inter-layer

boundary parameters. Each sample in the dataset

is generated with different front points representing

the interlayer boundary and the corresponding

voltage measurement reading. Unseen data of

measured voltage from the surface electrodes on

the subsurface domain is used to evaluate the

trained ANN model.

Ⅱ. Electrical Impedance Tomography

EIT is a non-invasive imaging method composed

of a forward and inverse problem [39]. EIT

reconstructs the cross-sectional image of the

internal conductivity distribution of the domain.

Finite element method (FEM) [40] is used for

calculating the surface voltage measurement

reading in a forward problem. For estimating the

interlayer boundary of subsurface using EIT, an

array L number of electrodes el(l = 1, 2, · · · , L)

are discretely placed on the surface . A

constant amplitude current Il(l = 1, 2, · · · , L)

are injected through these electrodes on a

domain  and resulting voltages due to internal

conductivity distribution is measured on the

electrode surface. The conductivity distribution

 is known over  and the corresponding

electrical potential u(x, y) on the  is governed

by partial differential equation that is determined

from the Maxwell equations of electromagnetism

[13], [18].

∇∇  ∈ (1)

To represent a realistic and accurate physical

model, a complete electrode model (CEM) is used

[41]. For the uniqueness and existence of the
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Fig. 2. Interlayer boundary parameterized with the discrete 

front points.

solution, Kirchhoff’s laws on the measured

voltages and injected currents are needed [42],

which are defined as


 



  
  



   (2)

where Il is current injected and Vl is the

measured boundary potential.

1. Forward Problem

This section describes the mathematical modeling

used in this work. An electric current of constant

amplitude Il is applied to the surface electrode,

and boundary voltage Ul is measured through all

surface electrodes according to the known internal

conductivity of the domain . A finite element

method (FEM) [43] discretizes the potential

distribution u and the conductivity  of the

domain  as

≈  
  



 (3)

≈  
  




 (4)

where  and  are the basis function for the

electric potential and conductivity distribution,

respectively and a is the nodal voltage to be

determined. Nn and Ne are the number of nodes

and elements in the FEM subsurface mesh.

Figure 1 shows the mesh of the subsurface

domain under analysis using FEM. The basis

functions are chosen to ensure that the

constraints defined by equation 2 is fulfilled. The

linear equation of the finite element formulation

is expressed as

   (5)

where A is the stiffness matrix defined by

equation 5, b is solution vector and f is data

vector. For more details regarding FEM formulation,

refer to [39]. EIDORS [44] framework is used to

compute the forward solution of the EIT in the

Matlab software.

2. Interlayer boundary representation

When the conductivity values of the subsurface

is known a priori then the shape and location of

the interlayer boundary become the unknown to

be estimated. Considering the subsurface are

layered, the open boundary between the two

layers was approximated as a discrete front

points    located on the boundary

[45] [30]. Here  defines the total number of

front points, which describes the interlayer

boundary. The front point location  is given by

       (6)

where  is the reference point located on the

surface of the domain as shown in the figure 2.

The front point  is defined as the vertical

distance from the reference point (, 0) located

on the surface of the domain and the unknown

parameter is

   (7)

Ⅲ. GRAVITATIONAL SEARCH ALGORITHM

This section briefly describe the gravitational

search algorithm (GSA). The GSA is iterative

algorithm based on the Newton gravity law and

motion law. In GSA solutions are considered as an

agent, and their masses measure their performance.

The gravity law describes that each agent is

attracted with each other by gravitational force,
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which is defined as

   

 ×
  (8)

where g(t) is gravitational constant, Mi and Mj

is gravitational mass of agent i and j, receptively.

The position of the agents are updated based on

the velocity as

  × (9)

    (10)

where a(t) is the acceleration, v(t) is the

velocity, and rand is the random number. The

in-depth details of the GSA is explained in [46].

Ⅳ. ANN MODEL FOR INTERLAYER 

BOUNDARY ESTIMATION

This section describes how artificial neural network

(ANN) model is used to estimate the interlayer

boundary of the subsurface. The inverse problem

estimates the internal conductivity distribution of the

subsurface using the voltage reading measured

from the surface electrodes and the injected

current. The internal conductivity distribution of

the subsurface domain reconstructed by EIT is a

non-linear and ill-posed problem. These problems

cause a poor spatial resolution in the reconstructed

conductivity profile. To improve the reconstruction

performance, number of unknowns for estimation

needs to be decrease. If the conductivity values

inside the subsurface domain is known as a priori,

then the inverse problem of EIT becomes a shape

estimation problem. In the shape estimation there

are very few unknowns to be estimated which

will increase the reconstruction performance and

the spatial resolution.

In this work, the interlayer boundary’s front

points inside the subsurface domain are estimated

by the artificial neural network (ANN) model. ANN

model estimates the shape, size, and location of

the interlayer boundary, which maps the non-

linear relationship. The dataset is used to train

and test the model with fully connected hidden

layers with a hyperbolic tangent (Tanh) and

rectified linear unit (ReLU) as the activation

function [47]. This dataset contains measured

voltages and related interlayer boundary front

points. The ANN model comprises an input

layer, output layer, and five fully connected

hidden layers as illustrated in figure 3.

To estimate the interlayer boundary front

points by ANN model, we define the input layer

neurons as surface voltage measurements and

the output layer neurons as front points. The

hidden layers are used to extract the features

from the training dataset, which is used to map

the relationship between input and output data.

The mapping function  is learned during

the training of the model and expressed as

  
  



   (11)

where  is the weight of the node,  is the

measurement voltage reading, and m is the total

number of data samples. In the proposed model,

two different activation functions have been

implemented. The first four hidden layers use the

tanh function whereas, the last hidden layer is

activated using ReLU function. The tanh

function and ReLU function is defined as

Fig. 3. Schematic diagram of the artificial neural network 

model. Voltage measurements reading (V1,V2,..., 

VN) and front points (y1, y2,..., yk) are used as 

input and output data, respectively.
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Fig. 4. Training scheme of the deep neural network model for estimating the front points of the interlayer boundaries. 

The number represents the number of nodes for each layers. Different voltage measurement reading and 

corresponding boundary front points used for as a training dataset.

 
 

 

(12)

  max (13)

The ANN model is trained to learn the weights

() of the nodes of the hidden layers. The

training of the model for learning weights of the

nodes is done by minimizing the cost function.

The cost function is expressed as

  



  




 (14)

where m is the total number of data samples,

 is the ANN predicted output and 
 is the

desired output of the kth sample. It expresses the

sum of the errors between the estimated output

of the ANN model and the desired output in the

ANN model. The least-square cost function is

minimized to determine the weights of the node,

which is expressed as

  argmin
 



∥ 
∥


(15)

The ANN model updates the weights of each

nodes which minimizes the cost function. The

update of the weights is executed using Adam’s

optimization algorithm [48]. The weights  are

updated as

    


(16)

where  is the learning rate,  is the hyperparameter,

and  is a small value.

The weights,  , are updated by ANN model

during training which uses the training dataset.

The trained ANN model is evaluated with

unseen test data. The dataset was generated

using the subsurface finite element mesh with

subsurface layers, and the dataset contains the

surface voltage measurement from the simulations

of different shapes of the layers.

Ⅴ. Result and discussion

ANN model is designed, trained, and evaluated

for estimating the interlayer boundary front

points inside the subsurface domain. The domain

used for the study has the size of 10m in depth

and 20m in width. A total of 16 surface

electrodes are attached to the domain, illustrated

in figure 1. These electrodes are located on top

of the subsurface domain representing a surface

electrode placed 1m apart. An adjacent current

pattern is used in this study which generates 256

independent voltage readings.

EIT forward problem is solved using finite

element method to compute the boundary voltages
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for the resistivity profile with multi layer boundaries

represented using front points. The three layers

in the subsurface domain are assumed as alluvium,

clay, and argillite. The conductivity of those

layers are 0.0013 S/m, 0.01 S/m, and 0.04 S/m,

respectively [9], [49]. The three layers are

separated by two interlayer boundaries that have

difference shapes and thickness. Each layer

boundary is represented using five front points

with linear interpolation.

The interlayer boundaries are considered non-

crossing boundaries, and layers are considered a

piece wise with constant conductivity. The bottom

layer is considered as argillite, the middle layer as

clay, and the top layer as alluvium. A continuous

amplitude current of 1Amp is injected into the

domain, and the surface voltage is measured

across all surface electrodes. EIDORS [44] is used

for FEM numerical calculation which generates

voltage measurement reading based on the

corresponding interlayer boundaries front-points

of the subsurface domain. These voltage measurement

reading and the corresponding front-points makes

a dataset (training and testing). The training

dataset is used to train the ANN model for

learning the relationship between measured voltage

reading and the interlayer boundary front points.

The testing dataset is used to validate the training

of the ANN model.

Fig. 5. Mean square error (MSE) per epoch of training 

and validation data during training of the DNN 

model.

The ANN model is designed with 7-layers

consisting of an input layer, five hidden layers,

and an output layer as illustrated in figure 3.

The node size for the input layer is based

according to the voltage reading data and is set

to 256. The number of nodes for the output layer

is considered as 10. The output layers give the

front points of the interlayer boundaries. The

nodes for the hidden layers are 256, 128, 64, 32,

and 16. The one training dataset sample consists

of 256 independent boundary voltage measurements

as input, and the corresponding output consists

of 10 front points reading corresponding to the

interlayer boundaries. The training scheme for

the model is illustrated in figure 4. Tensorflow

[50] library in python is used to implement the

ANN algorithm with mean square error (MSE)

as loss function and Adam optimization algorithm

for optimization on a workstation configured with

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 8GB

RAM, NVIDIA GForce GT730 GPU, Windows

10. The ANN model is trained on a 20,000

dataset samples with 330 epochs and a batch

size of 100. The learning rate used during the

training of the ANN model is 1e-6. A validation

dataset is used to validate the training process,

and it contains 20% of the training dataset

samples. Root mean square error (RMSE) is

used to evaluate the accuracy of the trained

model. The definition of RMSE is

Fig. 6. Root mean square error (RMSE) per epoch of training 

and validation data during training of DNN model.
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  





  

 








 




  


 (17)

where y is the estimated front points by ANN

model and yt is the true value of front points

representing the interlayer boundary in the

subsurface domain. RMSE is also used for

checking the error between estimated front-points

with the actual front-points of the interlayer.

Also, the Pearson correlation coefficient (PCC)

[51] is used to find the correlation between the

estimated front points and the true front points

that represent interlayer boundaries. PCC is

defined as

Fig. 7. True conductivity distribution of the two-layered 

subsurface and the estimated interlayer boundary 

by the GSA represented by a red line.

 





  



  
  




 




  



  
  




 



(18)

where y is the estimated, yt is the true value of

the front points respectively, and N is the total

number of front points.

The training and the validation updates per

epoch of the ANN model is evaluated based on

MSE and RMSE. Figure 5 show the MSE per

epoch during the training of the ANN model.

MSE per epoch shows the ANN model learning

capability. The learning parameters are analyzedduring

the training process with the validation dataset.

The accuracy of the ANN model per epoch is

validated using the RMSE during the training

process. Figure 6 shows the RMSE per epoch

during the training process. From the MSE and

RMSE graphs, we can see the model’s training,

which has significantly improved per epoch.

When the training and validation are complete,

different voltage measurement reading is used

for testing. This dataset contains noisy voltage

measurement readings that are unseen by the

ANN model. The measurement voltage reading

for every case is generated with different interlayer

boundary front points. In the test cases, rocks

are added to the subsurface domain into different

layers and are considered while generating the

test data. These rocks act as anomalies and are

randomly generated for each case, considered

noise in the dataset, representing a more realistic

scenario. We tried to consider all types of rocks

in the study that are found in the subsurface

domain. The conductivities of these rocks are

considered within a range of 2e-4S/m to 2e-7S/m

[49].

In this work, three test cases are analyzed with

different interlayer boundaries of the subsurface

domain. Before comparing the GSA algorithm

with the ANN, a single interlayer boundary was

estimated by GSA. The estimation of the interlayer

boundary for the two-layered subsurface domain

was conducted before it was tested for the

three-layered subsurface domain. The estimation

result of the GSA and the true scenario is

presented in the figure 7. The figure shows the

estimated interlayer boundary by GSA has good

accuracy with the ground truth.

The case 1 scenario of the subsurface is shown

in figure 8a. In this case, the interlayer boundaries

are linear. The anomalies represented as rocks

are randomly generated and spread across the

middle and lower layers of the subsurface. The

reconstructed interlayer boundaries by the ANN

model and the GSA for case 1 are presented in

figure 8b. The estimated interlayer boundaries by

the ANN model are in close resemblance to the

actual scenario, whereas the estimated boundaries

by GSA intersect with each other.
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Fig. 9 a. Numerical case 2 for interlayer boundary 

estimation of subsurface true conductivity profile.

Fig. 9 b. Numerical results of case 2 for interlayer 

boundary estimation of subsurface reconstructed 

boundaries using ANN and GSA. The top, 

middle, and bottom layers are considered as 

Argellite, clay, and alluvium, respectively.

Fig. 8 a. Numerical case 1 for interlayer boundary 

estimation of subsurface true conductivity profile.

Fig. 8 b. Numerical results of case 1 for interlayer boundary 

estimation of subsurface reconstructed boundaries 

using ANN and GSA. The top, middle, and bottom 

layers are considered as Argellite, clay, and alluvium, 

respectively.

The interlayer boundaries are considered as a

non-linear for the case 2. The anomalies were

concentrated in the middle and bottom layers of

the subsurface as shown in figure 9a. The

interlayer boundary estimated by the ANN model

is shown in the figure 9b. The interlayer

boundaries estimated by the GSA are presented

and can be compared with the ANN. Estimated

boundaries by GSA are crossed or overlapped

with each other, whereas ANN estimation have a

good accuracy with the true interlayer boundaries.

Figure 10a shows the case 3 of the subsurface

domain. In this case, the open boundaries are

curved and the rocks are present in the top and

the middle layers of the domain. The estimated

interlayer boundaries by the ANN and the GSA

algorithm are present in figure 10b. GSA failed

to estimate the interlayer boundaries and are

estimated close to the center region with intersected

boundaries. These boundaries are overlapped and

has very poor accuracy. The estimated interlayer

boundaries by the ANN model, on the other

hand, resemble the true case with reasonable

accuracy.

From the cases studied in this work, the

estimation of the interlayer boundaries front-points

by ANN model has good accuracy while GSA

fails to estimate the front points with good accuracy

in the complex subsurface domain. The RMSE

and PCC were evaluated for the front-points of

the interlayer boundaries of each case estimated

by both algorithms. The RMSE and PCC values

are presented in table 1 and table 2, respectively.

From the RMSE and PCC values, we can see

that the ANN model outperformed the GSA. Of

all the test cases, it is noticed that ANN has

better estimation performance when the layer

boundaries are linear and as the boundaries are
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Fig. 10 a. Numerical case 3 for interlayer boundary 

estimation of subsurface true conductivity profile.

Fig. 10 b. Numerical results of case 3 for interlayer 

boundary estimation of subsurface reconstructed 

boundaries using ANN and GSA. The top, 

middle, and bottom layers are considered as 

Argellite, clay, and alluvium, respectively.

more curved the estimation is slightly affected.

The trained ANN model for estimating the

front-points of open interlayer boundaries in the

subsurface domain has a very good accuracy

with the true scenario. However, there are limitations

of this approach. The number of layers in the

subsurface are assumed to be known a priori.

The conductivity distribution is assumed to be

uniform within each layer and the value of the

layers conductivity is known beforehand also.

The training of the ANN model takes time, but

once the model is trained estimation of inter layer

boundaries is done in few seconds. The ANN

model works very well for the opened interlayer

boundary but with some limitations. This ANN

model is not trained for the closed interlayer

boundaries and for the horizontal opened boundaries.

Also, layer boundaries need to be end to end and

do not intersect with each other.

Table 1. RMSE values for cases estimated by ANN and 

GSA.

Algorithm Case1 Case2 Case3

ANN 0.088 0.180 0.176

GSA 0.356 0.453 0.544

Table 2. Comparison of PCC for the estimated front 

points by ANN and GSA.

Algorithm Case1 Case2 Case3

ANN 0.998 0.941 0.933

GSA 0.837 0.510 0.019

Ⅵ. Conclusions

In this work, we have estimated the interlayer

boundaries of subsurface using electrical impedance

tomography. The conductivities inside the subsurface

are assumed to be known, and the ANN model

estimates the interlayer boundary. The layers a

opened and are present across the domain. This

ANN model is not trained for the closed and/or

horizontal interlayer boundaries. Discrete front

points describe the interlayer boundary. An

inverse problem of estimating the interlayer

boundary front points is done with a ANN

model. The 7-layer ANN model is used for the

estimation of front points. The ANN model is

trained using the pair of boundary voltage

readings and the corresponding front points. The

measured voltage readings are used as an input,

and interlayer boundary front points are used as

output, making the dataset. The dataset is divided

into three parts, i.e. training, validation, and

testing, containing non-repeated data samples. A

noisy measured boundary voltage is fed to a

trained ANN model to estimate the corresponding

interlayer boundary front points. The interlayer

boundaries for subsurface estimation is done

with ANN, and the performance of the proposed

ANN is compared against GSA. GSA was found

to have reasonable accuracy with a single-layer

interface (two-layer configuration), and its performance

degrades for multi-layer boundary estimation.
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The performance of GSA is dependant on the

number of unknowns and the range of initial

solutions. The RMSE values of the estimated

interlayer boundaries by the ANN model also

indicate that the estimated interlayer boundaries

have good accuracy than the GSA. The only

drawback of the ANN model is the training time.

To train a model lot of time and computing

resources are needed, but the trained model

estimates the parameter is a fraction of seconds.

At the same time, GSA takes a lot of time to

estimate the solution compared with the trained

ANN model. Advantages of the ANN model are

the simplicity of implementation, better accuracy

and, faster estimation, and it does not require

Jacobian matrix computation.
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