• Title/Summary/Keyword: a hopfield network

Search Result 107, Processing Time 0.028 seconds

A Modified Hopfield Network and Its Application To The Layer Assignment (개선된 Hopfield Network 모델과 Layer assignment 문제에의 응용)

  • Kim, Kye-Hyun;Hwang, Hee-Yeung;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.539-541
    • /
    • 1990
  • A new neural network model, based on the Hopfield's crossbar associative network, is presented and shown to be an effective tool for the NP-Complete problems. This model is applied to a class of layer assignment problems for VLSI routing. The results indicate that this modified Hopfield model improves stability and accuracy.

  • PDF

Division of Working Area using Hopfield Network (Hopfield Network을 이용한 작업영역 분할)

  • 차영엽;최범식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.160-160
    • /
    • 2000
  • An optimization approach is used to solve the division problem of working area, and a cost function is defined to represent the constraints on the solution, which is then mapped onto the Hopfield neural network for minimization. Each neuron in the network represents a possible combination among many components. Division is achieved by initializing each neuron that represents a possible combination and then allowing the network settle down into a stable state. The network uses the initialized inputs and the compatibility measures among components in order to divide working area.

  • PDF

Single-Electron Devices for Hopfield Neural Network (홉필드 신경회로망을 위한 단일전자 소자)

  • Yu, Yun-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.16-21
    • /
    • 2008
  • This paper introduces a new type of Hopfield neural network using newly developed single-electron devices. In the electrical model of the Hopfield neural network, a single-electron synapse, used as a voltage(or current)-variable resistor, and two stages of single-electron inverters, used as a nonlinear activation function, are simulated with a single-electron circuit simulator using Monte-Carlo method to verily their operation.

A Modified Hopfield Network and It's application to the Layer Assignment (Hopfield 신경 회로망의 개선과 Layer Assignment 문제에의 응용)

  • 김규현;황희영;이종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.234-237
    • /
    • 1991
  • A new neural network model, based on the Hopfield crossbar associative network, is presented and shown to be an effective tool for the NP-Complete problems. This model is applied to a class of layer assignment problems for VLSI routing. The results indicate that this modified Hopfield model, improves stability and accuracy.

  • PDF

Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks (계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정)

  • 김문갑;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

Hopfield Network for Partitioning of Field of View (FOV 분할을 위한 Hopfield Network)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

A Methodology of Extracting Yongshin for Diagnosis of the Four Pillars Using Hopfield Network (Hopfield Network를 이용한 사주(四柱)진단 시스템에서의 (用神) 추출 방법론)

  • 박경숙;김정환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.257-260
    • /
    • 1996
  • This study is about the construction of algorithm for selecting Yongshin of the Four Pillars. To emulate the method the expert uses when he select the Yongshin, we introduce the Hopfield Network. The result of the simulation classified with Yongshin is presented.

  • PDF

Actuator Fault Diagnostic Algorithm based on Hopfield Network

  • Park, Tae-Geon;Ryu, Ji-Su;Hur, Hak-Bom;Ahn, In-Mo;Lee, Kee-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2000
  • A main contribution of this paper is the development of a Hopfield network-based algorithm for the fault diagnosis of the actuators in linear system with uncertainties. An unknown input decoupling approach is introduced to the design of an adaptive observer so that the observer is insensitive to uncertainties. As a result, the output observation error equation does not depend on the effect of uncertainties. Simultaneous energy minimization by the Hopfield network is used to minimize the least mean square of errors of errors of estimates of output variables. The Hopfield network provides an estimate of the gains of the actuators. When the system dynamics changes, identified gains go through a transient period and this period is used to detect faults. The proposed scheme is demonstrated through its application to a simulated second-order system.

  • PDF

Optimal time control of multiple robot using hopfield neural network (홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF

Partitioning of Field of View by Using Hopfield Network (홉필드 네트워크를 이용한 FOV 분할)

  • Cha, Young-Youp;Choi, Bum-Sick
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.667-672
    • /
    • 2001
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.

  • PDF