$Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.
Chang, Si Young;Oh, Sung-Tag;Suk, Myung-Jin;Hong, Chan Seok
한국분말재료학회지
/
제21권2호
/
pp.97-101
/
2014
The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered by spark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size of the irregular shaped 304 stainless steel powders was approximately 42 ${\mu}m$. After high energy ball milling at 800 rpm for 5h, the powders became spherical with a size of approximately 2 ${\mu}m$, and without formation of reaction compounds. From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles. As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sample increased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hardness of 550 Hv.
SiOx was prepared from a mixture of Si and SiO2 via high-energy ball milling as a negative electrode material for Li-ion batteries. The molar ratio of Si to SiO2 as precursors and the milling time were varied to identify the synthetic condition that could exhibit desirable anode performances. With an appropriate milling time, the material showed a unique microstructure in which amorphous Si nanoparticles were intimately embedded within the SiO2 matrix. The interface between the Si and SiO2 was composed of silicon suboxides with Si oxidation states from 0 to +4 as proven by X-ray photoelectron spectroscopy and electrochemical analysis. With the addition of a conductive carbon (Super P carbon black) as a coating material, the SiOx/C manifested superior specific capacity to a commercial SiOx/C composite without compromising its cycle-life performance. The simple mechanochemical method described in this study will shed light on cost-effective synthesis of high-capacity silicon oxides as promising anode materials.
Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to $110\;{\mu}m$. After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately $5\;{\mu}m$, which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately $7\;{\mu}m$ at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.
Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500-600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with high-performance WS2-based photodiodes and transistors used in practical semiconductor applications.
A full-factorial design of experiments with three input factors and two levels for each factor including center points was utilized for the preparation and characterization of twelve types of $BaTiO_3$ slips for tape casting. Ceramic powders with different particle sizes, different milling methods such as high energy milling and conventional ball milling, and two types of dispersant with different polymeric species were chosen as input factors in order to investigate their effects on slip and on green tape properties. Tape casting, a small rectangular-shaped K-square preparation, characterization and quantitative data analysis using statistical software were followed. Ceramic powder was the most significant among three input factors for the output responses of slip viscosity and green tape density, showing more favorable results with large particles than with very fine ones. In addition, high energy milling for only 30 min was more efficient than 24h of conventional ball milling in terms of powder dispersion and milling. The optimum condition based on the experimental results was a slip exposed to high energy milling with large ceramic particles along with a methylethyl acetate dispersant.
The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.
Minsu Kim;Ashutosh Sharma;Myoung Jin Chae;Hansung Lee;Byungmin Ahn
Archives of Metallurgy and Materials
/
제66권3호
/
pp.703-707
/
2021
In this work, we have designed a new high entropy alloy containing lightweight elements, e.g., Al, Fe, Mn, Ti, Cu, Si by high energy ball milling and spark plasma sintering. The composition of Si was kept at 0.75 at% in this study. The results showed that the produced AlCuFeMnTiSi0.75 high entropy alloy was BCC structured. The evolution of BCC1 and BCC2 phases was observed with increasing the milling time up to 60 h. The spark plasma sintering treatment of milled compacts from 650-950℃ showed the phase separation of BCC into BCC1 and BCC2. The density and strength of these developed high entropy alloys (95-98%, and 1000 HV) improved with milling time and were maximum at 850℃ sintering temperature. The current work demonstrated desirable possibilities of Al-Si based high entropy alloys for substitution of traditional cast components at intermediate temperature applications.
Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.
In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.