• Title/Summary/Keyword: a genetic algorithm

Search Result 4,128, Processing Time 0.032 seconds

Optimization of Control Parameters for Hydraulic Systems Using Genetic Algorithms (유전알고리듬을 이용한 유압시스템의 제어파라메터 최적화)

  • Hyeon, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1462-1469
    • /
    • 1997
  • This study presents a genetic algorithm-based method for optimizing control parameters in fluid power systems. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics. A genetic algorithm seeks control parameters maximizing a measure that evaluates system performance. Five control gains of the PID-PD cascade controller fr an electrohydraulic speed control system with a variable displacement hydraulic motor are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that optimization of the five gains by manual tuning should be a task of great difficulty and that a genetic algorithm is an efficient scheme giving economy of time and in labor in optimizing control parameters of fluid power systems.

Acitve Noise Control via Walsh Transform Domain Genetic Algorithm (월쉬변환영역 유전자 알고리즘에 의한 능동소음제어)

  • Yim, Kook-Hyun;Kim, Jong-Boo;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.610-616
    • /
    • 2000
  • This paper presents an active noise control algorithm via Walsh transform domain controller learned by genetic algorithm. Typical active noise control algorithms such as the filtered-x lms algorithm are based on the gradient algorithm. Gradient algorithm have two major problems; local minima and eigenvalue ratio. To solve these problems, we propose a combined algorithm which consist of genetic learning algorithm and discrete Walsh transform called Walsh Transform Domain Genetic Algorithm(WTDGA). Analyses and computer simulations on the effect of Walsh transform to the genetic algorithm are performed. The results show that WTDGA increase convergence speed and reduce steady state errors.

  • PDF

Nonlinear Blind Equalizer Using Hybrid Genetic Algorithm and RBF Networks

  • Han, Soo-Whan;Han, Chang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1689-1699
    • /
    • 2006
  • A nonlinear channel blind equalizer by using a hybrid genetic algorithm, which merges a genetic algorithm with simulated annealing, and a RBF network is presented. In this study, a hybrid genetic algorithm is used to estimate the output states of a nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. From these estimated output states, the desired channel states of the nonlinear channel are derived and placed at the center of a RBF equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA, and the relatively high accuracy and fast convergence of the method are achieved.

  • PDF

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm (유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구)

  • 김동광;조남효;차순창;조순호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing (유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구)

  • Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF

Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm (병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계)

  • Yi, Moo-Keun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.30-39
    • /
    • 2008
  • In this paper, a parallel micro genetic algorithm was utilized in the optimal design of composite structures instead of a conventional genetic algorithm(SGA). Micro genetic algorithm searches the optimal design variables with only 5 individuals. The diversities from the nominal convergence and the re-initialization processes make micro genetic algorithm to find out the optimums with such a small population size. Two different composite structure optimization problems were proposed to confirm the efficiency of micro genetic algorithm compared with SGA. The results showed that micro genetic algorithm can get the solutions of the same level of SGA while reducing the calculation costs up to 70% of SGA. The composite laminated structure optimization under the load uncertainty was conducted using micro genetic algorithm. The result revealed that the design variables regarding the load uncertainty are less sensitive to load variation than that of fixed applied load. From the above-mentioned results, we confirmed micro genetic algorithm as a optimization method of composite structures is efficient.

Design and Implementation of a Genetic Algorithm for Detailed Routing (디테일드 라우팅 유전자 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.63-69
    • /
    • 2002
  • Detailed routing is a problem assigning each net to a track after global routing. The most popular algorithms for detailed routing include left-edge algorithm, dogleg algorithm, and greedy channel routing algorithm. In this paper we propose a genetic algorithm searching solution space for the detailed routing problem. We compare the performance of proposed genetic algorithm(GA) for detailed routing with that of greedy channel routing algorithm by analyzing the results of each implementation.

  • PDF

Design and Implementation of a Genetic Algorithm for Global Routing (글로벌 라우팅 유전자 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • Global routing is to assign each net to routing regions to accomplish the required interconnections. The most popular algorithms for global routing inlcude maze routing algorithm, line-probe algorithm, shortest path based algorithm, and Steiner tree based algorithm. In this paper we propose weighted network heuristic(WNH) as a minimal Steiner tree search method in a routing graph and a genetic algorithm based on WNH for the global routing. We compare the genetic algorithm(GA) with simulated annealing(SA) by analyzing the results of each implementation.

  • PDF