• Title/Summary/Keyword: a fuzzy net controller

Search Result 43, Processing Time 0.032 seconds

Application of Fuzzy Transition Timed Petri Net for Discrete Event Dynamic Systems (퍼지 트랜지션 시간 페트리 네트의 이산 사건 시스템에 응용)

  • 모영승;김진권;김정철;탁상아;황형수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.364-364
    • /
    • 2000
  • Timed Petri Net(TPN) is one of methods to model and to analyze Discrete Event Dynamic Systems(DEDSs) with real time values. It has two time values, earliest firing time ($\alpha$$_{i}$) and latest firing time ($\beta$$_{I}$) for the each transition. A transition of TPN is fired at arbitrary time of time interval ($\alpha$$_{I}$, $\beta$$_{i}$). Uncertainty of firing time gives difficulty to analyze and estimate a modeled system. In this paper, we proposed the Fuzzy Transition Timed Petri Net(FTTPN) with fuzzy theory to determine the optimal transition time (${\gamma}$$_{i}$). The transition firing time (${\gamma}$$_{i}$) of FTTPN is determined from fuzzy controller which is modeled with information of state transition. Each of the traffic signal controllers are modeled using the proposed method and timed petri net. And its Performance is evaluated by simulation of traffic signal controller. controller.

  • PDF

Fuzzy control designed GA of a electro-rheology fluid damper (전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle (궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

Development of Fuzzy-Neural Control Algorithm for the Motion Control of K1-Track Vehicle (K1-궤도차량의 운동제어를 위한 퍼지-뉴럴제어 알고리즘 개발)

  • 한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • This paper proposes a new approach to the design of fuzzy-neuro control for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF