• Title/Summary/Keyword: a friction compensation

Search Result 125, Processing Time 0.025 seconds

Friction Compensation of the Pendubot based on the LuGre Model (LuGre 모델에 기반한 펜듀봇의 마찰력 보상)

  • Eom, Myung-Whan;Kim, Cheol-Joong;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.848-855
    • /
    • 2011
  • This paper proposes a method to reduce the limit cycle phenomenon that appears in the steady-state response of a pendubot system, when it is controlled by a state feedback controller based on the linearized system model. For this, we employed the compensator which estimates the friction based on the LuGre model in the LQR control. The proposed compensation method is validated by experiments for a pendubot system, which shows that the external disturbance as well can be efficiently compensated.

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

A friction compensation scheme based on the on-line estimation with a reduced model (축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF

Robust Sliding Mode Friction Control with Adaptive Friction Observer and Recurrent Fuzzy Neural Network

  • Shin, Kyoo-Jae;Han, Seong-I.
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • A robust friction compensation scheme is proposed in this paper. The recurrent fuzzy neural network and friction parameter observer are developed with sliding mode based controller in order to obtain precise position tracking performance. For a servo system with incomplete identified friction parameters, a proposed control scheme provides a satisfactory result via some experiment.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator (햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상)

  • Kim, Sang-Hyun;Lee, Chang-Gyu;Kim, Ji-Suk;Ryu, Je-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.883-888
    • /
    • 2011
  • Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

CDM Controller Incorporating Friction Compensation for Rotational Inverted Pendulum

  • Cahyadi, Adha I.;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1901-1905
    • /
    • 2004
  • A controller designed by CDM for a servo type system which is an augmented system constructed from a rotational inverted pendulum with an integrator added to its arm, is presented in this paper. In order to be able to apply the CDM concept, the augmented system must be linearized and converted into controllable canonical form. Then, the controller consisting of the state feedback gain matrix and an integral gain in the sense of CDM can be obtained. This shows that design procedure for the proposed controller is easy. The experimental results obtained from the rotational inverted pendulum controlled by the proposed controller show that the system response has no steady-state error, however, the oscillation amplitude of the arm angle is still significant. Therefore, in this paper, the friction compensation using Coulomb friction with stiction is also added to the controller. The oscillation amplitude of the arm angle that can be reduced remarkably is also shown in the experimental results.

  • PDF

A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control (2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별)

  • Yeo, Sung Min;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

Performance Evaluation of Nonlinear Character Friction Control

  • Cho, Yong-Hee;Lee, Won-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2551-2554
    • /
    • 2003
  • In this paper, we describe the nonlinear character for a friction control. The nonlinear character of friction control is inherent in mechanical system, which has gained more and more interest. The modeling and compensation of nonlinear friction are difficult tasks for precise motion control. This paper is performance evaluation of nonlinearities and mechanical compliance exists together with friction control system.

  • PDF

An Effective Compensation Method of Press Tool Geometry for Stamping a Ultra High Strength Steel Center-pillar after Heat Treatment (표면처리 후 초고강도강 센터필러 프레스 금형의 효율적 보정기법)

  • Lee, T.G.;Kwak, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.439-445
    • /
    • 2014
  • Changes in the accuracy of the geometrical shape after a surface treatment are often very large due to the variation of the deformation mechanisms such as edge draw-in and the variation in springback caused by the reduction in the coefficient of friction between the tool and the blank. In the present study, the resulting shape accuracy due to the changes in deformation is quantitatively examined in order to predict the variation and to remove any undesirable additional tool compensation for the center pillar member made from steel with a UTS of 980MPa. The study examines important process parameters that are closely related with the edge draw-in such as the blank holding force, the contact status between the tool and the blank and the friction coefficient. The proposed method is applied within the finite element analysis of the stamping process for tools after a surface treatment and the amount of edge draw-in and flush values are compared between the analysis and experiments. The results demonstrate that the proposed quantification and finite element scheme are applicable to complicated tool compensation procedures and compensation can be designed effectively.