• Title/Summary/Keyword: a error model

Search Result 7,334, Processing Time 0.038 seconds

Design of an Excitation System for Simulating Wind-Induced Response and Evaluating Wind-load Resistance Characteristics (건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sung-Kyung;Min, Kyung-Won;Chun, Lan;Kang, Kyung-Soo;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) and active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

An Analysis on Causalities Among GDP, Electricity Consumption, CO2 Emission and FDI Inflow in Korea (한국의 경제성장, 전력소비, CO2 배출 및 외국인직접투자 유입 간 인과관계 분석)

  • Park, Chang-dae;Kim, Sung-won;Park, Jung-gu
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.1-17
    • /
    • 2019
  • This article analyzes causal relationships among gross domestic product(GDP), electricity consumption, carbon dioxide($CO_2$) emission and foreign direct investments(FDI) inflow of Korea over the period from 1976 to 2014, using unit root test, cointegration test, and vector error correction model(VECM). As the results, this article found (1) a long-run bi-directional causality between GDP and electricity consumption, which may imply a negative impact of electricity consumption-saving policy on economic growth, (2) uni-directional short- and long-run causalities running from $CO_2$ emission to GDP, and a uni-directional long-run causality running from $CO_2$ emission to electricity consumption, which can result in a negative impact of $CO_2$ emission reduction policy on economic growth and electricity consumption, (3) a uni-directional long-run causality running from FDI to GDP, and uni-directional short- and long-run causalities running from FDI to electricity consumption, which may result from relatively lower electricity prices than investing countries, (4) no causality between FDI and $CO_2$ emission, which is based on the characteristics of FDI composed of service industries. Considering the above causal relationships among the four variables, the policy implication needs to focus on the electricity demand management based on the relevant R&Ds, and on the gradual transition from fossil fuel- to renewable-energy. Adaptive policy to increase the FDI inflow is also needed.

Risk Analysis and Selection of the Main Factors in Fishing Vessel Accidents Through a Risk Matrix (위험도 매트릭스를 이용한 어선의 사고 위험도 분석과 사고 주요 요인 도출에 관한 연구)

  • WON, Yoo-Kyung;KIM, Dong-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.139-150
    • /
    • 2019
  • Though, fishing vessel accidents account for 70 % of all maritime accidents in Korean waters, most research has focused on identifying causes and developing mitigation policies in an attempt to reduce this rate. However, predicting and evaluating accident risk needs to be done before the implementation of such reduction measures. For this reasons, we havve performed a risk analysis to calculate the risk of accidents and propose a risk criteria matrix with 4 quadrants, within one of which forecasted risk is plotted for the relative comparison of risks. For this research, we considered 9 types of fishing vessel accidents as reported by Korea Maritime Safety Tribunal (KMST). Given that no risk evaluation criteria have been established in Korea, we established a two-dimensional frequency-consequence grid consisting of four quadrants into which paired frequency and consequence for each type of accident are presented. With the simple structure of the evaluation model, one can easily verify the effect of frequency and consequence on the resulting risk within each quadrant. Consequently, these risk evaluation results will help a decision maker employ more realistic risk mitigation measures for accident types situated in different quadrants. As an application of the risk evaluation matrix, accident types were further analyzed using accident causes including human error (factor) and appropriate risk reduction options may be established by comparing the relative frequency and consequence of each accident cause.

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

An Evaluation Technique for the Path-following Control Performance of Autonomous Surface Ships (자율운항선박의 항로추정성능 평가기법 개발에 관한 연구)

  • Daejeong Kim;ChunKi Lee;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • A series of studies on the development of autonomous surface ships have been promoted in domestic and foreign countries. One of the main technologies for the development of autonomous ships is path-following control, which is closely related to securing the safety of ships at sea. In this regard, the path-following performance of an autonomous ship should be first evaluated at the design stage. The main aim of this study was to develop a visual and quantitative evaluation method for the path-following control performance of an autonomous ship at the design stage. This evaluation technique was developed using a computational fluid dynamics (CFD)-based path-following control model together with a line-of-sight (LOS) guidance algorithm. CFD software was utilized to visualize waves around the ship, performing path-following control for visual evaluation. In addition, a quantitative evaluation was carried out using the difference between the desired and estimated yaw angles, as well as the distance difference between the planned and estimated trajectories. The results demonstrated that the ship experienced large deviations from the planned path near the waypoints while changing its course. It was also found that the fluid phenomena around the ship could be easily identified by visualizing the flow generated by the ship. It is expected that the evaluation method proposed in this study will contribute to the visual and quantitative evaluation of the path-following performance of autonomous ships at the design stage.

Settlement Evaluation of Caisson-Type Quay Wall Using PSI of Velocity During Earthquake (지진시 속도의 PSI를 활용한 케이슨식 안벽의 침하량 평가 )

  • Gichun Kang;Hyunjun Euo;Minje Baek;Hyunsu Yun;Jungwook Choi;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.71-83
    • /
    • 2023
  • It is very important to predict the amount of settlement in order to maintain the function of the coastal structure. Finite element analysis methods and real and model experiments are used as methods for this, but this has the disadvantage of requiring a lot of cost and time. Therefore, this study was conducted for the purpose of a simple formula proposal that can easily predict the amount of settlement of the caisson-type quay wall structure. In the research process, after calculating the PSI (Power Spectrum Intensity) of the velocity, the amount of settlement of the structure is calculated by substituting it into the simple formula of the existing gravity breakwater. By comparing and analyzing the amount of settlement of the structure obtained through numerical analysis, it was confirmed that the error between the amount of settlement of the existing simple formula and the amount of settlement of the numerical analysis was large, and it was confirmed that the background could not be considered in the case of the existing simple formula. Therefore, this study proposed a correction factor for the background of the quay wall structure, indicating a simple formula that can obtain the amount of settlement of the caisson-type quay wall structure. Compared to the numerical analysis settlement amount, it was judged that this simple formula had sufficient precision in calculating the caisson-type quay wall settlement amount. In addition, facilities vulnerable to earthquake resistance can be easily extracted in situations where time and cost are insufficient, and it is expected to be used as a screening technique.

Psychometric Properties of the Korean Version of Self-Efficacy for HIV Disease Management Skills (한국어판 HIV 감염인의 건강관리 자기효능감 도구의 타당도와 신뢰도)

  • Kim, Gwang Suk;Kim, Layoung;Shim, Mi-So;Baek, Seoyoung;Kim, Namhee;Park, Min Kyung;Lee, Youngjin
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.3
    • /
    • pp.295-308
    • /
    • 2023
  • Purpose: This study evaluated the validity and reliability of Shively and colleagues' self-efficacy for HIV disease management skills (HIV-SE) among Korean participants. Methods: The original HIV-SE questionnaire, comprising 34 items, was translated into Korean using a translation and back-translation process. To enhance clarity and eliminate redundancy, the author and expert committee engaged in multiple discussions and integrated two items with similar meanings into a single item. Further, four HIV nurse experts tested content validity. Survey data were collected from 227 individuals diagnosed with HIV from five Korean hospitals. Construct validity was verified through confirmatory factor analysis. Criterion validity was evaluated using Pearson's correlation coefficients with the new general self-efficacy scale. Internal consistency reliability and test-retest were examined for reliability. Results: The Korean version of HIV-SE (K-HIV-SE) comprises 33 items across six domains: "managing depression/mood," "managing medications," "managing symptoms," "communicating with a healthcare provider," "getting support/help," and "managing fatigue." The fitness of the modified model was acceptable (minimum value of the discrepancy function/degree of freedom = 2.49, root mean square error of approximation = .08, goodness-of-fit index = .76, adjusted goodness-of-fit index = .71, Tucker-Lewis index = .84, and comparative fit index = .86). The internal consistency reliability (Cronbach's α = .91) and test-retest reliability (intraclass correlation coefficient = .73) were good. The criterion validity of the K-HIV-SE was .59 (p < .001). Conclusion: This study suggests that the K-HIV-SE is useful for efficiently assessing self-efficacy for HIV disease management.

Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study

  • Sung-Hoon Han;Jisup Lim;Jun-Sik Kim;Jin-Hyoung Cho;Mihee Hong;Minji Kim;Su-Jung Kim;Yoon-Ji Kim;Young Ho Kim;Sung-Hoon Lim;Sang Jin Sung;Kyung-Hwa Kang;Seung-Hak Baek;Sung-Kwon Choi;Namkug Kim
    • The korean journal of orthodontics
    • /
    • v.54 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Objective: To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). Methods: A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. Results: The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. Conclusions: The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF