• Title/Summary/Keyword: a electric vehicle

Search Result 1,785, Processing Time 0.031 seconds

Study on Fuel Economy Characteristics of Plug-In Hybrid Electric Vehicle by Cumulative Distance (누적 주행거리에 따른 플러그인 하이브리드 자동차의 연비 특성 연구)

  • PARK, JINSUNG;LIM, JAEHYUK;KIM, KIHO;LEE, JUNGMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.661-667
    • /
    • 2018
  • Electric vehicles are taken a long time to charge and are restricted driving where charging infrastructure was not sufficiently constructed. The vehicle developed to solve these problems is a plug-in hybrid vehicle. It is possible to drive a certain distance by using electric motor and when the battery runs out, it operate the engine. Plug-in hybrid vehicle have a complicated structure and a lot of parts comparing a general vehicle because the electric parts and the internal combustion engine are installed together. Therefore, as the aging (mileage) of the plug-in hybrid vehicle, the influence which change of fuel consumption is expected to be larger than a general vehicle, but an experimental data are lacking. In this paper, we cumulate a mileage of the plug-in hybrid vehicle about 15,000 km and measured the fuel economy when the cumulated distance reached within 160 km, 6,500 km, 15,000 km respectively, by using domestic public test method. For measuring fuel economy of the vehicle, CD mode (driving distance on a single charge) which use only motor and the CS mode which operate motor and combustion engine were measured respectively. As a result, the fuel economy slightly increased at cumulated mileage of 6,500 km compared to the 160 km and the fuel economy of 15,000 km was similar to 160 km.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

A Study on the Characteristics of the Transitional Period about Electrication Vehicle Industry Space in China (중국 전기차 산업 공간의 전환기 특성 연구)

  • Choe, Ja-Yeong
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.386-399
    • /
    • 2021
  • This study targets the rapidly growing electric vehicle industry. Currently, China is the world's largest electric vehicle producer, and several global and local companies are adapting to the transition environment of the electric vehicle industry and carrying out various activities. To analyze the causes and environmental characteristics of this transition, we analyzed the activities of the Chinese government, automobile companies, and companies in forward and backward linked industries, which are major actors in the production network. As a result, with full support from the Chinese government, functional changes of existing actors and an increase in the entry of new actors resulted in a transition to an electric vehicle industry space accompanied by new values.

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack (리튬 이온 전지 팩의 열적 거동 모델링)

  • Yi, Jae-Shin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.

A Study on the Electrical and Electronic Architecture of Electric Vehicle Powertrain Domain through Big Data Analysis (빅데이터 분석을 통한 전기차 파워트레인 도메인 전기전자 아키텍처 연구)

  • Kim, Do Kon;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.47-73
    • /
    • 2022
  • Purpose The purpose of this study is to select the electronic architecture concept of the powertrain domain of the electronic platform to be applied to electric vehicles after 2025. Previously, the automotive electrical and electronic architecture was determined only by trend analysis, but the purpose was to determine the scenario based on the data and select it with clear evaluation indicators. Design/methodology/approach This study identified the function to be applied to the powertrain domain of next-generation electric vehicle, estimated the controller, defined the function feature list, organized the scenario candidates with the controller list and function feature list, and selected the final architecture scenario. Findings According to the research results, the powertrain domain of electric vehicles was selected as the architectural concept to apply the DCU (Domain Control Unit) and VCU (Vehicle Control Unit) integrated architecture to next-generation electric vehicles. Although it is disadvantageous or equivalent in terms of cost, it was found to be excellent in most indicators such as stability, security, and hardware demand.

A Study on Narrowband Electromagnetic Interference in The Cabin of Vehicle (자동차 실내 전자파의 협대역 특성에 관한 연구)

  • Kim, Minwoo;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.30-36
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, various electronically controlled components of vehicles are rapidly increasing. A variety of advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) using electrical energy source are increasing, too. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are equipped with more new electronic systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference (EMI) test and an electromagnetic susceptibility (EMS) test. In this paper, in order to investigate the electromagnetic interference in the cabin of vehicle by various electric and electronic components of vehicles, a series of narrowband electromagnetic emission tests are conducted. For comparison, the several digital home appliances (smartphone under charging, laptop compuer and digital camera), which are used a lot in daily lives, are tested.

A Study on the Acceptability and Preference of Electric Car for Consumers through the Selective Model (선택 모형을 통한 소비자에 대한 전기자동차 수용성 및 선호도 연구)

  • Kim, Eun-Joo
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.213-220
    • /
    • 2018
  • The automobile industry in Korea is a very large industrial sector. Nowadays, as the interest in low carbon green growth grows all over the world, it is time to actively secure future competitiveness of the automobile industry. Therefore, it is essential to study consumer attitudes and intentions for electric vehicles at the time when technological and social changes are expected. This study was conducted to investigate the acceptability and preference of electric vehicle for 250 people. The results are as follows. As the monthly income and the number of residents increased, the decision was made to accommodate the electric vehicle. The larger the effect of the electric vehicle on the consumers, the more the electric car decided to accommodate the electric car. In addition, three demographic characteristics (monthly income, number of residents, residence type) showed that there was a difference in satisfaction of electric vehicles. As a result of analyzing the satisfaction level of the electric vehicle, it was found that the electric vehicle has a satisfactory effect on the consumer, the electric vehicle is about 3.5 times more satisfying, and the larger the interest of the electric car is, the more the electric car is about 2.1 times.

Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle (주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어)

  • Park, Youngkug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

Maximum Torque Control of IPMSM for Electric Vehicle Drive (전기자동차 구동을 위한 IPMSM의 최대 토크제어)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • Interior permanent magnet synchronous motor (IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM for electric vehicle drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ${^i}_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for electric vehicle drive, the operating characteristics controlled by maximum torque control are examined in detail by simulation.