Transactions of the Korean Society of Automotive Engineers
/
v.24
no.1
/
pp.99-111
/
2016
This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.
The Journal of the Society of Korean Medicine Diagnostics
/
v.22
no.1
/
pp.45-56
/
2018
The authors are using Qi-diagnosis (integrated diagnosis by bio-energy) that is a method of diagnosis and treatment. We applied Qi-diagnosis to the main study to lay the foundation and framework for research and education about the Korean Medicine. The authors try to describe systemically and specifically the Qi-diagnosis that the authors are using in clinical diagnosis ane treatment so that anyone can use it. The authors have been able to grasp the flow of human bio-energy through years of training. It has had many effects by applying the Qi-diagnosis to patients. The steps of the bio-energy flow have become objective. And the authors have been applied to acupuncture, herbal medicine, moxibustion, bruising treatment and anthrax anesthesia in clinical through the Qi-diagnosis. Also, it is applied to the life management of patients. It is applied to arts such as music therapy and art therapy. The deeper the depth of the Qi-diagnosis, the greater the opportunity to utilize the Qi-diagnosis. The Qi-diagnosis is the origin of the korean medicine. It was able to make diagnosis and treatment correct and to establish clues that the medical problems would be solved through the Qi-diagnosis. In order to do so, the diagnostician must be able to feel the auricular flow of the body accurately and objectively. In addition, he must have a comprehensive understanding of the overall framework of medicine. As a result, diagnosis and treatment of the patient as well as general problems of the patient can be identified and advised, so comprehensive treatment is possible. And it is not only a specific person can do it, but it is a diagnostic method that anyone can take if they take the basic steps step by step.
Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).
Kim, Geunhee;Kim, Jae Min;Shin, Ji Hyeon;Lee, Seung Jun
Nuclear Engineering and Technology
/
v.54
no.10
/
pp.3620-3630
/
2022
The diagnosis of abnormalities in a nuclear power plant is essential to maintain power plant safety. When an abnormal event occurs, the operator diagnoses the event and selects the appropriate abnormal operating procedures and sub-procedures to implement the necessary measures. To support this, abnormality diagnosis systems using data-driven methods such as artificial neural networks and convolutional neural networks have been developed. However, data-driven models cannot always guarantee an accurate diagnosis because they cannot simulate all possible abnormal events. Therefore, abnormality diagnosis systems should be able to detect their own potential misdiagnosis. This paper proposes a rulebased diagnostic validation algorithm using a previously developed two-stage diagnosis model in abnormal situations. We analyzed the diagnostic results of the sub-procedure stage when the first diagnostic results were inaccurate and derived a rule to filter the inconsistent sub-procedure diagnostic results, which may be inaccurate diagnoses. In a case study, two abnormality diagnosis models were built using gated recurrent units and long short-term memory cells, and consistency checks on the diagnostic results from both models were performed to detect any inconsistencies. Based on this, a re-diagnosis was performed to select the label of the second-best value in the first diagnosis, after which the diagnosis accuracy increased. That is, the model proposed in this study made it possible to detect diagnostic failures by the developed consistency check of the sub-procedure diagnostic results. The consistency check process has the advantage that the operator can review the results and increase the diagnosis success rate by performing additional re-diagnoses. The developed model is expected to have increased applicability as an operator support system in terms of selecting the appropriate AOPs and sub-procedures with re-diagnosis, thereby further increasing abnormal event diagnostic accuracy.
Ability diagnosis is similar to medical diagnosis from a number of perspectives. However, a medical diagnosis is carried out by a direct observation through medical apparatuses, while an ability diagnosis is made by an indirect observation in the from of testing. In this respect, ability diagnosis is more difficult than medical diagnosis. Confined to middle school 1st year Mathematics, we collected survey data in 1996 from monthly tests. The data consist of student responses to diagnosis results on their abilities and of the effects of catch-up guidances for individual students which are provided based on their ability diagnosis outcomes. We analyzed the data and summarized the result in the paper. One of the main results is that the ability diagnosis as used in the paper has a very positive effect on catch-up study. But it is important to note that the effects vary across the ability groups, the effect appearing weaker in the lower ability group than in the higher ability group. This calls our attention to the need that the ability diagnosis and guidance for the catch-up study be differentiated among ability groups.
This study was conducted to investigate the present situation and problems related to the use of nursing diagnosis in practice. The data were obtained from 332 subjects (27 director of nursing service, 302 staff nurses) who worked in university hospitals in Korea from July through August 1988 using a mailed questionnaire. Data were analyzed by frequency, X$^2$ test and t-test. The findings were as follows ; 1, Clinical use of nursing diagnosis by directors of nursing service and staff nurses. 1) The majority of the nursing departments (88.9%) conducted group education on nursing diagnosis during the last 5 years and 81.5% of them kept a record format for nursing diagnosis : 88.9% of them had had prior experience with the nursing diagnosis. 2) Most of nurses (97.0%) had received education on nursing diagnosis. 2. Factors related to the clinical use of nursing diagnosis in nursing service departments and by staff nurses. 1) The one factor related to the use of nursing diagnosis in the nursing service department was the existence of a record. 2) Factors related to the use of nursing diagnosis by the staff nurses were the organization style of the nursing service department, group education during the last 5 years, existence of a record, the attitude of the director of nursing service, and prior experience of the use of the nursing diagnosis as characteristics of nursing service department and educational experience of nursing diagnosis as a character of nurse. 3. Problems with the use of nursing diagnosis. 1) The primary problem was the lack of time and personnel (mean : 3.757) ; the second problem was the lack of knowledge and will to use nursing diagnosis in practice by the staff nurses(mean : 3.546). 2) There was no significant difference in problems expressed by the director of nursing services and the nurses. The majority of nurses who worked in the university hospitals expressed interest in and concern about the use of nursing diagnosis. Most of the nurses had had education about on nursing diagnosis but use in practice was limited. The primary problem was lack of time and manpower. Strategies for improving use of the nursing diagnosis in practice : 1) Strengthening the education about nursing diagnosis and a holistic approach to understanding human beings. 2) Develop protocols for the use of nursing diagnosis. 3) Eliminate the language barrier regarding nursing diagnosis by translation into in Korean. 4) Decentralization of the nursing service to promote accountability by individual nurses for use of nursing diagnosis.
For last several decades with the achievement of fast economic development, the electrical fires occupies over 30 percent of total fire incidents almost every year in Korea and not decreased in spite of much times and efforts. Electrical fire cause diagnostics are to confirm a cause for the fire by examination of fire scene. Cause diagnosis methods haven't been systematized yet, because of limits for available information, investigator's biased knowledge, etc. Therefore, in order to assist the investigators and to find out the exact causes of electrical fires, required is research for an electrical fire cause diagnosis system using DB, computer programming and some mathematical tools. The electrical fire cause diagnosis system has two functions of DB and electrical fire cause diagnosis. The cause diagnosis is conducted by a case-based reasoning on a case base and rule-based reasoning on a rule base. For the diagnosis with high reliability, a mixed reasoning approach of a case-based reasoning and fuzzy rule-based reasoning has been adopted. The electrical fire cause diagnosis system proposes the electrical fire causes inferred from the diagnosis processes, and possibility of the causes as well.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.12
/
pp.1687-1696
/
1995
An integrated fault diagnosis system for heterogeneous manufacturing environments is developed. This system has a contrast with existing diagnosis systems in the respect that they are mostly for diagnosing faults on individual machines. In addition to the usual (e.g., audio, electrical) diagnostic signals, the characteristics of products from the machines are considered as the unifying diagnostic parameters among heterogeneous machines in the diagnosis. The system is composed of a knowledge representation scheme and a diagnostic query processing mechanism. Its knowledge representation scheme allows the diagnostic knowledges from heterogeneous unit diagnostic systems to be uniformly expressed in terms of the causal relations among relevant data items. It is flexible in the sense that causes for one relation can be effects for another may be reflected on our knowledge representation scheme. The diagnosis mechanism is based on a probabilistic inferencing method. This probablistic diagnosis mechanism provides more general diagnosis than existing ones in that it accommodates multiple causes and takes complication among causes into account. These scheme and mechanism are applied to a typical example to demonstrate how our system works.
Kim, Hyun-Dong;Yoon, Jae-Bok;Kim, Hyun-Dong;Kim, Tae-Seon
Proceedings of the KIEE Conference
/
2004.11c
/
pp.328-330
/
2004
In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.
This paper presents a knowledge-based electrical fire cause diagnosis system using the fuzzy reasoning. The cause diagnosis of electrical fires may be approached either by studying electric facilities or by investigating cause using precision instruments at the fire site. However, cause diagnosis methods for electrical fires haven't been systematized yet. The system focused on database(DB) construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. The cause diagnosis system for the electrical fire was implemented with entity-relational DB systems using Access 2000, one of DB development tools. Visual Basic is used as a DB building tool. The inference to confirm fire causes is conducted on the knowledge-based by combined approach of a case-based and a rule-based reasoning. A case-based cause diagnosis is designed to match the newly occurred fire case with the past fire cases stored in a DB by a kind of pattern recognition. The rule-based cause diagnosis includes intelligent objects having fuzzy attributes and rules, and is used for handling knowledge about cause reasoning. A rule-based using a fuzzy reasoning has been adopted. To infer the results from fire signs, a fuzzy operation of Yager sum was adopted. The reasoning is conducted on the rule-based reasoning that a rule-based DB system built with many rules derived from the existing diagnosis methods and the expertise in fire investigation. The cause diagnosis system proposes the causes obtained from the diagnosis process and showed possibility of electrical fire causes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.