• Title/Summary/Keyword: a depth

Search Result 22,081, Processing Time 0.049 seconds

Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season (겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향)

  • Woo, Sung-Ho;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

Computational integral imaging with enhanced depth sensitivity

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.718-721
    • /
    • 2008
  • Novel computational integral imaging technique with enhanced depth sensitivity is proposed. For each lateral position at a given depth plane, the dissimilarity between corresponding pixels of the elemental images is measured and used as a suppressing factor for that position. Experimental and simulation results show that reconstructed depth image on the incorrect depth plane is effectively suppressed.

  • PDF

A Method for Precise Depth Detection in Stereoscopic Display

  • Lee Seung-Woo;Kim Nam
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2006
  • This paper discusses a method for precise depth detection in stereoscopic images. The geometry of a stereoscopic camera and a display system is presented. It was found that there exists a difference between the calculated depth and the perceived depth of objects. For precise depth detection, the proposed registration method is investigated and proved by experiment in stable condition.

An Image Depth Estimation Algorithm based on Pixel-wise Confidence and Concordance Correlation Coefficient (픽셀단위 상대적 신뢰도와 일치상관계수를 이용한 영상의 깊이 추정 알고리즘)

  • Kim, Yeonwoo;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • In this paper, we describe an algorithm for extracting depth information from a single image based on CNN. When acquiring three-dimensional information from a single two-dimensional image using a deep-learning technique, it is difficult to accurately predict the edge portion of the depth image because it is a part where the depth changes abruptly. in this paper, we introduce the concept of pixel-wise confidence to take advantage of these characteristics. We propose an algorithm that estimates depth information from a highly reliable flat part and propagates it to the edge part to improve the accuracy of depth estimation.

A Study on the 3D Video Generation Technique using Multi-view and Depth Camera (다시점 카메라 및 depth 카메라를 이용한 3 차원 비디오 생성 기술 연구)

  • Um, Gi-Mun;Chang, Eun-Young;Hur, Nam-Ho;Lee, Soo-In
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.549-552
    • /
    • 2005
  • This paper presents a 3D video content generation technique and system that uses the multi-view images and the depth map. The proposed uses 3-view video and depth inputs from the 3-view video camera and depth camera for the 3D video content production. Each camera is calibrated using Tsai's calibration method, and its parameters are used to rectify multi-view images for the multi-view stereo matching. The depth and disparity maps for the center-view are obtained from both the depth camera and the multi-view stereo matching technique. These two maps are fused to obtain more reliable depth map. Obtained depth map is not only used to insert a virtual object to the scene based on the depth key, but is also used to synthesize virtual viewpoint images. Some preliminary test results are given to show the functionality of the proposed technique.

  • PDF

A Region Depth Estimation Algorithm using Motion Vector from Monocular Video Sequence (단안영상에서 움직임 벡터를 이용한 영역의 깊이추정)

  • 손정만;박영민;윤영우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.96-105
    • /
    • 2004
  • The recovering 3D image from 2D requires the depth information for each picture element. The manual creation of those 3D models is time consuming and expensive. The goal in this paper is to estimate the relative depth information of every region from single view image with camera translation. The paper is based on the fact that the motion of every point within image which taken from camera translation depends on the depth. Motion vector using full-search motion estimation is compensated for camera rotation and zooming. We have developed a framework that estimates the average frame depth by analyzing motion vector and then calculates relative depth of region to average frame depth. Simulation results show that the depth of region belongs to a near or far object is consistent accord with relative depth that man recognizes.

  • PDF

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Precision Analysis of the Depth Measurement System Using a Single Camera with a Rotating Mirror (회전 평면경과 단일 카메라를 이용한 거리측정 시스템의 정밀도 분석)

  • ;;;Chun Shin Lin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.626-633
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has been done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object point at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. Depth measurement based on such pixel movement is investigated. Since the mirror rotates along an axis that is in parallel with the vertical axis of the image plane, the image of an object will only move horizontally. This eases the task of finding corresponding image points. In this paper, the principle of the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied. Analysis shows that the measurement error increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

Depth sensitivity of stereoscopic displays

  • Choi, Byeong-Hwa;Choi, Dong-Wook;Lee, Ja-Eun;Lee, Seung-Bae;Kim, Sung-Chul
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • Depth sensitivity is considered one of the factors influencing 3D displays the most. In this paper, the perceptual 3D depth was quantitatively measured to compare the depth difference among the display devices. No difference was found in the typical display performance among the devices, but the subjective evaluation of the depth sensitivity where the disparity was varied showed that the organic light emitting diode (OLED) had the highest performance, mainly due to its almost 0% crosstalk, one of the features of OLED. Crosstalk is a form of image superposition that greatly affects the depth sensitivity. The experiment results showed that the quantitative depth sensitivity varies due to geometric factors such as disparity, viewing distance, and subjective sensitivity, depending on the display image characteristics, such as crosstalk and contrast.

2D-to-3D Conversion System using Depth Map Enhancement

  • Chen, Ju-Chin;Huang, Meng-yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1159-1181
    • /
    • 2016
  • This study introduces an image-based 2D-to-3D conversion system that provides significant stereoscopic visual effects for humans. The linear and atmospheric perspective cues that compensate each other are employed to estimate depth information. Rather than retrieving a precise depth value for pixels from the depth cues, a direction angle of the image is estimated and then the depth gradient, in accordance with the direction angle, is integrated with superpixels to obtain the depth map. However, stereoscopic effects of synthesized views obtained from this depth map are limited and dissatisfy viewers. To obtain impressive visual effects, the viewer's main focus is considered, and thus salient object detection is performed to explore the significance region for visual attention. Then, the depth map is refined by locally modifying the depth values within the significance region. The refinement process not only maintains global depth consistency by correcting non-uniform depth values but also enhances the visual stereoscopic effect. Experimental results show that in subjective evaluation, the subjectively evaluated degree of satisfaction with the proposed method is approximately 7% greater than both existing commercial conversion software and state-of-the-art approach.