• Title/Summary/Keyword: a control system

Search Result 43,755, Processing Time 0.065 seconds

Configuration of a Boiler Control System in Thermal Power Plant (화력 발전소 보일러 제어 시스템의 구성에 관한 연구)

  • 변승현;박두용;김병철;신만수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.168-168
    • /
    • 2000
  • In this paper, a boiler control system for thermal power plant is configured. The boiler control system for thermal power plant is largely composed of an ABC(Automatic Boiler Control) system and a MBC(Mill Burner Control) system. ABC system controls analog process values, so almost all analog control logic is dealt with in ABC system. On the other hand, MBC system relates to sequence control logic such as MFT logic, Furnace Purge, Safety related logic. Advanced control systems made from advanced countries deal with an ABC system and MBC system in a distributed control system. In this paper, we adopt a DCS as an ABC system and adopt a PLC system as a MBC system to configure a boiler control system for thermal power plant using domestic control system. Finally the validity of the configured boiler control system is shown via simulation using digital simulator for boiler system in thermal power plant.

  • PDF

A Control System for Solar Thermal Power Plant (태양열발전 제어시스템)

  • Park, Young-Chil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.693-697
    • /
    • 2007
  • A control system for solar thermal power plant is the control system to coordinate the whole system's operation, including management of distributed control systems, process control for optimal operation of total system, monitoring system operating conditions and doing administrative functions. This work, as a progress report, presents the results obtained so far in building a control system for the 1MW solar thermal power plant. To make the control system, we first defined the control system's hierarchy and classified the role of each layer. Then, as the first stage of making control system, we designed and developed the sun tracking control system for heliostat.

  • PDF

Robust Hybrid Control System (강인 복합제어 시스템)

  • 박규식;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.442-449
    • /
    • 2003
  • This paper presents a robust hybrid control system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of restirctions and limitations that exist when each system is acting alone. A LQG algorithm with on-off control scheme, H$_2$ and H$_{\infty}$ control algorithms with various frequency weighting filters are used to improve the controller robustness of the active control part in the hybrid control system. The numerital simulation results show that control performances of robust hybrid control systems are similar to those of the hybrid control system with LQG algorithm. Furthermore, it is verified that robust hybrid control systems are more robust than the hybrid control system with LQG algorithm and there are no signs of instabilities in the $\pm$5% stiffness matrix perturbed system. Therefore, the proposed hybrid control system have a good robustness for stiffness matrix perturbation without loss of control effectiveness.

  • PDF

A Model of a Mechanical Flight-Control System for Simulating Control Authority Switching of a Helicopter Technical Demonstrator (헬리콥터 기술시범기의 비행제어 조종권 전환 모의를 위한 기계식 조종장치 모델 설계 연구)

  • Yang, Chang Deok
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Since the flight-control system is critical for the safety of an aircraft, a fail-safe system is needed in a flight demonstrator used to test a new flight-control system. A backup control system is also needed to ensure safety in using a mechanical flight-control system. This paper presents a development of an MFCS (Mechanical Flight Control System) model for simulating control authority switching of a helicopter technical demonstrator, as well as the results of evaluating the developed MFCS model.

Seismic Response Control of a Cable-Stayed Bridge using a $\mu$-Synthesis Method ($\mu$-합성법을 이용한 사장교의 지진응답 제어)

  • 박규식;정형조;윤우현;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.476-483
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a μ-synthesis method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a f-synthesis method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The control performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by LQG algorithm and an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the control performance of the proposed control system is superior to that of the passive system and slightly better than that of the active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a μ-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

A study on the simulation test of Autonomous station control system (자율분산 역 제어시스템 모의시험 연구)

  • Kim, Young-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.2045-2050
    • /
    • 2008
  • The Autonomous station control system by applying the concepts of autonomous decentralized system is a system which can solve the problems of the current central control system. The Autonomous station control system tester developed in order to test for Autonomous station control system. The main function of tester is a time-deadline test, a schedule broadcast test, a route control test and a version-up test, etc. In the paper, we build the reliability of the Autonomous station control system by testing the Autonomous station control system tester. Also, the test enable the on-line test without the system interruption and verify the function of the Autonomous station control system developed by applying the concepts of Autonomous decentralized system to the current Central control system.

  • PDF

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Hybrid Control with a Bang-Bang Type Controller (Bang-Bang 형태의 제어기를 갖는 복합제어)

  • 박규식;정형조;조상원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.193-200
    • /
    • 2003
  • This paper presents a hybrid (i.e., integrated passive-active) system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e., on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the hybrid control system are superior to those of the passive control system and slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with μ-synthesis method and there are no signs of instability in the overall system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used to seismically excited cable-stayed bridges.

  • PDF

The implementation of Access Control System using Biometric System (Biometric System(fingerprint Reader)을 이용한 Access Control System 구현에 관한 연구)

  • 김광환;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.439-442
    • /
    • 2003
  • In this paper, a system that implementation of Access Control System Using Biometric System. Biometrics is science which deals with verifying or recognizing using physiological or behavioral characteristic Access Control System uses Biometric system to make an access control system. Biometrics goes under the study of bio-recognition or bio-measurement. It is a technology or study that identifies individuals using one's Biometric character. Access control system is a system used to identify one's entrance and exit, personal management, and security. Access control system can be joined with Biometric system to produce easier use and more sufficient effects. Access control system using Wiegand (Data Format) signal output, can replace earlier RF Card systems and make an access control (security) system. It uses RS-232, Rs-422 or TCP/IP type communication with the computer so an embedded system can be controlled using the software.

  • PDF

Design and Manufacture of a Machine Tool Control System for Workpiece Automatic Loading System (공작기계용 공작물 자동 적재장치의 제어장치 설계 및 제작)

  • An, Jun-Hwan;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.62-68
    • /
    • 2019
  • In this paper, we describe the design and manufacture of a control system for an automatic loading system that inserts and removes workpieces after machining. The control system was manufactured using DSP for high speed and consists of a power unit, a control unit, a communication unit, and a display unit. We connected the control system to the mechanical system of the automatic workpiece loader to test the characteristics, which allowed us to raise and lower the automatic workpiece loading system to the desired position. The successful test demonstrates that we can use the control system to control the workpiece automatic loading system.