• 제목/요약/키워드: a conditional spatial autoregressive model

검색결과 11건 처리시간 0.021초

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정 (Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model)

  • 조성일;이재용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1155-1168
    • /
    • 2016
  • 기상 자료의 경우 한 지역의 기후가 인접지역의 기후와 비슷한 양상을 띄고 각 지역의 확률 밀도 함수 (probability density function)가 잘 알려진 확률 모형을 따르지 않는다는 것이 알려져 있다. 본 논문에서는 이러한 특성을 고려하여 이상 기후 현상이 뚜렷히 나타나는 여름철 평균 극한 기온(extreme temperature)의 확률 밀도 함수를 추정하고자 한다. 이를 위하여 공간적 상관관계 (spatial correlation)를 고려하는 비모수 베이지안 (nonparametric Bayesian) 모형인 조건부 자기회귀 종추출 혼합모형 (mixtures of conditional autoregression species sampling model)을 이용하였다. 자료는 이스트앵글리아 대학교 (University of East Anglia)에서 제공하는 전 지구의 최대 기온과 최소 기온자료 중 우리나라에 해당하는 지역의 자료를 사용하였다.

출발지 공간 연관성을 고려한 지역별 수단선택확률 추정 연구 (Estimating Probability of Mode Choice at Regional Level by Considering Spatial Association of Departure Place)

  • 엄진기;박만식;허태영
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.656-662
    • /
    • 2009
  • 일반적으로 교통수단선택 모형은 이용자의 인구 및 개인통행특성 등을 반영한 수단별 선호도를 효용함수로 구축하여 분석하고 있다. 본 연구에서는 이용자의 출발지에 대한 공간적 연관성을 수단선택모형에 고려한 방법을 제시하였다. 이를 위하여 공간적 연관성을 포함하는 공간로지스틱 회귀모형을 고려하였다. 신뢰성있는 추정값을 얻기 위해 베이지안 기법을 적용하였으며 이 연구에서 제시한 방법론은 수단선호도 조사가 이루어지지 않은 지역에 대해서도 수단분담률을 추정할 수 있을 것으로 기대된다.

공간 다수준 분석을 이용한 부산지역 암발생 및 암사망 추정 (Cancer incidence and mortality estimations in Busan by using spatial multi-level model)

  • 고영규;한준희;윤태호;김창훈;노맹석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1169-1182
    • /
    • 2016
  • 한국인의 전형적인 사망 원인인 암은 보건 분야에서 중요한 문제이다. 통계청이 제시한 Cause of death statistics (2014)에 따르면, 7대 광역시 중 부산의 표준화 사망률 (standardized mortality rate; SMR)이 가장 높게 나타났다. 이 논문에서는 부산지역암센터의 암등록자료를 이용하여 암발생률과 암사망률의 정도를 추정하고자 한다. 2003~2009년 자료를 대상으로 구/동과 같은 소지역 단위를 고려하였으며, 전체 암과 4대 주요암 (위암, 대장암, 폐암, 간암)에 대해 분석하였다. 공간 상관성을 고려한 공간 다수준 모형을 통해 모형 선택과 모수 추정을 수행하였다. 공간 효과에 대해서는 조건부 자기회귀 (conditional autoregressive; CAR)를 가정하였으며 WinBUGS를 이용하였다. 분석의 결과로 각 지역에서의 공간 효과를 어떻게 분석하고 해석하는지 제시하였다.

상업적 도메인의 공간 분석에 관한 연구 - 서울을 사례로 - (Analysis on the Spatial Dimension of the Commercial Domains: the Case of Seoul, Korea)

  • Hee Yeon Lee;Yong Gyun Lee
    • 대한지리학회지
    • /
    • 제39권2호
    • /
    • pp.195-211
    • /
    • 2004
  • 정보통신기술의 급격한 혁신은 디지털 경제의 도래를 가져왔으며. 정보를 생산ㆍ소비하는데 있어서 인터넷의 중요성을 증대시켰을 뿐만 아니라 상업적 도메인의 급속한 증가를 가져왔다. 도메인이란 인터넷상에서 정보 전달을 위한 주소의 기능을 담당하지만, 실제로 등록된 도메인의 주소는 공간적 특성을 지니고 있다. 본 연구에서는 상업적 도메인의 공간적 분석을 위해 도메인 등록 원시자료를 데이터베이스로 구축하여 공간통계와 지리정보체계를 활용하였다. 서울의 경우 상업적 도메인의 분포는 44%가 단지 3개 구에 집중되어 있을 정도로 매우 불균등하게 나타나고 있으며, 상업적 도메인이 입지한 장소들 간에는 강한 공간적 자기상관을 보이고 있다. 본 연구에서는 상업적 도메인의 공간적 변이에 영향을 주는 요인들을 추출하기 위해 공간적 자기상관을 효율적으로 제거할 수 있는 공간자기회귀모델을 사용하였다. 본 연구 결과, 상업적 도메인 업체들의 선별적 입지와 이들의 경제활동은 동태적인 공간 특성을 보여주면서 도시내부의 공간구조 변화에 영향을 미치고 있다.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

공간적 연관구조를 고려한 총범죄 자료 분석 (Analysis of Total Crime Count Data Based on Spatial Association Structure)

  • 최정순;박만식;원유복;김학열;허태영
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.335-344
    • /
    • 2010
  • 공간자료분석에서 공간적 상관성을 배제한 일반적인 회귀모형을 통한 모수 추정값들은 신뢰성의 문제가 지적 되어 오고 있다. 본 연구에서는 공간자료의 상관성을 고려한 모형을 구축하기 위하여 일변량 조건부자기회귀모형을 이용하였으며 베이지안 기법을 통하여 모수를 추정하고 공간상관성이 고려된 공간 가산자료모형과 고려되지 않은 일반 가산자료모형을 비교하였다. 연구 대상으로는 서울시의 25개 행정자치구별 총범죄 자료를 이용하였으며 자료분석을 통하여 도시계획과 같은 국가 정책의 수립에 참고자료로 활용될 수 있으리라 판단된다.

베이지안 모형을 활용한 국내 노인 자살률 질병지도 (Bayesian Analysis and Mapping of Elderly Korean Suicide Rates)

  • 이자연;김달호
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.325-334
    • /
    • 2015
  • 한국의 고령화는 매우 빠른 속도로 진행되고 있고, 노인자살은 노인의 주요 사망원인이며 노인은 다른 연력층보다 자살의 고위험군으로 알려져있다. 고령화 시대에서 노인의 자살은 사회적인 문제로 대두되고 있으며 이를 예방하기 위해 노인자살에 대한 위험요인을 파악하고, 지역적 차이를 확인하는 것이 중요하다. 특히 노인의 자살문제에서는 지역사회와의 통합결여 등이 큰 원인으로 고려되기 때문이다. 따라서, 본 논문에서는 공간적 상관관계를 고려하여 추정된 표준화사망률을 이용하여 질병지도를 작성하고자 하였다. 공간적 상관관계를 고려하기 위해서 simultaneous CAR model을 사용하였다. 2006년부터 2010년까지 통계청 사망자료를 이용하여 국내 시군구별 노인자살자수에 대해 두 모형을 적합시켜본 결과, 공간적 상관관계를 고려하지 않은 모형보다 공간적 상관관계를 고려한 모형이 더 좋은 모형임을 보였다. 또한 효율적인 베이지안 추론을 위해 격자망 방법 등을 고려하였다.

비만율 자료에 대한 베이지안 공간 분석 (Bayesian spatial analysis of obesity proportion data)

  • 최정순
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1203-1214
    • /
    • 2016
  • 비만은 그 자체가 질병이면서 다른 질병의 위험인자로 사회경제학적 요인과 관련성이 높다. 급증한 국내 비만인구에 대한 사회적 차원에서의 예방을 위하여 비만과 연관성이 있는 사회경제적 요인을 파악하는 것이 중요하다. 특히, 비만과 사회경제학적 요인간의 연관성은 성별에 따라 상이할 수 있으며 지역적 변동성 역시 존재한다. 본 논문에서는 공간적 상관성을 고려하여 비만율에 영향을 미치는 사회경제적 요인의 효과를 성별에 따라 추정하고자 한다. 공간적 상관성을 설명하기 위하여 베이지안 접근법을 기반으로 한 조건부 자기회귀모형을 고려하였다. 실증예제로 2010년 서울시 25개 자치구별 비만율 자료에 대하여 제안한 공간 모형과 공간적 상관성을 고려하지 않은 모형을 적합시켜본 결과, 공간적 상관성을 고려한 모형이 모형의 적합도와 예측력 측면에서 더 우수함을 알 수 있었다.

Deprivation and Mortality at the Town Level in Busan, Korea: An Ecological Study

  • Choi, Min-Hyeok;Cheong, Kyu-Seok;Cho, Byung-Mann;Hwang, In-Kyung;Kim, Chang-Hun;Kim, Myoung-Hee;Hwang, Seung-Sik;Lim, Jeong-Hun;Yoon, Tae-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • 제44권6호
    • /
    • pp.242-248
    • /
    • 2011
  • Objectives: Busan is reported to have the highest mortality rate among 16 provinces in Korea, as well as considerable health inequality across its districts. This study sought to examine overall and cause-specific mortality and deprivation at the town level in Busan, thereby identifying towns and causes of deaths to be targeted for improving overall health and alleviating health inequality. Methods: Standardized mortality ratios (SMRs) for all-cause and four specific leading causes of death were calculated at the town level in Busan for the years 2005 through 2008. To construct a deprivation index, principal components and factor analysis were adopted, using 10% sample data from the 2005 census. Geographic information system (GIS) mapping techniques were applied to compare spatial distributions between the deprivation index and SMRs. We fitted the Gaussian conditional autoregressive model (CAR) to estimate the relative risks of mortality by deprivation level, controlling for both the heterogeneity effect and spatial autocorrelation. Results: The SMRs of towns in Busan averaged 100.3, ranging from 70.7 to 139.8. In old inner cities and towns reclaimed for replaced households, the deprivation index and SMRs were relatively high. CAR modeling showed that gaps in SMRs for heart disease, cerebrovascular disease, and physical injury were particularly high. Conclusions: Our findings indicate that more deprived towns are likely to have higher mortality, in particular from cardiovascular disease and physical injury. To improve overall health status and address health inequality, such deprived towns should be targeted.