• Title/Summary/Keyword: a combustion chamber

Search Result 1,196, Processing Time 0.023 seconds

An Experimental Study on the Effect of Mixture Distribution in the Constant Volume Combustion Chamber on the Combustion Characteristics (정적 연소실내 혼합기 분포가 연소특성에 미치는 영향에 관한 실험적 연구)

  • 이기형;이창희;안용흠
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • It is well known that the stratified charge combustion has many kind of advantages to combustion characteristics, such as higher thermal efficiency and less CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can be caused low fuel consumption, it is produced the high unburned hydrocarbon and soot levels because of different equivalence ratio in the combustion chamber. Moreover it has a lot of possibility of low output and misfire if the mixture gas would not be in existence around the spark plug. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of locally mixture gas distribution according to control the direct injection and premixed injection in the chamber were examined experimentally. In addition, the effects of turbulence on stratified charge combustion process were observed by schlieren photography.

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement (한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발)

  • Kim, Jonggyu;Kim, Seong-Ku;Joh, Miok;Ryu, Chulsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • In this study, a high-pressure subsacle thrust chamber was developed to verify the core technology for KSLV-II performance enhancement. The core technologies are the design of an injector for high-pressure combustion, development of a combustion stabilization device using the additive manufacturing technique, and the design and fabrication of mixing head and regeneratively cooled combustion chamber. The core technologies, which have been verified through the development of high-pressure subscale thrust chamber, will be used to develop large engine liquid rocket engine thrust chamber in the future.

A study on the combustion characteristics according to evaporation rate of gasoline (가솔린 연료의 기화율 변화에 따른 연소 특성에 관한 기초 연구)

  • Lee, K.H.;Lee, C.S.;Shin, K.S.;Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.29-36
    • /
    • 1996
  • The present study systematically investigates the effect of evaporation rate on the combustion characteristics and the flame stabilization in a gasoline engine. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaparating a gasoline fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion duration were deteriorated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for gasoline fuel was strongly influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

ANALYSIS OF DIRECT INJECTION SI STRATIFIED COMBUSTION IN HYDROGEN LEAN MIXTURE - COMBUSTION PROMOTION AND COOLING LOSS BY HYDROGEN -

  • Shudo, Toshio;Tsuga, Koichiro
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.85-91
    • /
    • 2001
  • Characteristics of methane direct-injection spark-ignition stratified combustion in lean hydrogen mixture were analyzed both in a single cylinder engine and in a constant volume combustion chamber. Combustion pressure and Instantaneous combustion chamber wall temperature during the combustion process were measured with a thin-film thermocouple and used in analyses of combustion and cooling loss. Results in this research show that the premixed hydrogen increases cooling loss to combustion chamber wall while achieving combustion promotion, and the combustion system is effective especially in lean mixture conditions. Analysis of flame propagation was also done with Schlieren photography in the constant volume combustion chamber.

  • PDF

A Study on the Combustion Characteristics of Opposed-jet-Flames in a Divided Combustion Chamber (분할연소실내의 대향분출화염의 연소특성에 관한 연구)

  • 조경국;정인석;정경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.50-60
    • /
    • 1987
  • Combustion characteristics of opposed-jet-flames spouting out from dual prechambers of a divided combustion chamber were investigated by using high speed schilieren photography and chamber pressure measurement. Result shows that opposed-jet-flames are characterized by the parameter ( $A_{ori}$/ $V_{p}$) and there exists a certain critical value of ( $A_{ori}$/ $V_{p}$)c which distinguishes flame propagation patterns in the main chamber. Also higher chamber pressure and shorter total burning time can be derived by adopting this dual prechamber divided combustion chamber, which would lead a possibility of an appropriate combustion method of high load and low emissions.ons.ons.

  • PDF

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.