• 제목/요약/키워드: a calibration

검색결과 5,249건 처리시간 0.033초

Development of robust Calibration for Determination Sweetness of Fuji Apple fruit using Near Infrared Reflectance Spectroscopy

  • Sohn, Mi-Ryeong;Kwon, Young-Kill;Cho, Rae-Kwang
    • Near Infrared Analysis
    • /
    • 제2권1호
    • /
    • pp.55-58
    • /
    • 2001
  • The object of this work was to investigate the influence of growing district and harvest year on calibration for sweetness (Brix) determination of Fuji apple fruit using near infrared (NIR) reflectance spectroscopy, and to develop the robust calibration across these variation. The calibration models was based on wavelength range of 1100∼2500 nm using a stepwise multiple linear regression. A calibration model by sample set of one growing district was not transferable to other growing districts. The combined calibration (data of three growing districts) predicted reasonable well against a population set drawn from all growing districts (SEP=0.69, Bias=0.075). A calibration model by sample set of one harvest year was not also transferable to other harvest years. The combined calibration (data of three harvest years) predicted well against a population set drawn from all harvest years (SEP=0.53, Bias=0.004).

Ellipsometry에서의 Calibration 및 입사면 고정형 Ellipsometer (Calibration and a Plane of Incidence Fixed Ellipsometer)

  • 경재선;오혜근;안일신;김옥경
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.23-26
    • /
    • 2003
  • The general users find difficulties in using ellipsometers. Thus, the object of this study is to construct an ellipsometer with simple operation principle. We developed an ellipsometer which does not require alignment and calibration before measuring sample. A basis structure model after rotating a compensator spectroscopic ellipsometry, the fixed incidence angle at $70^{\circ}$. This ellipsometer does not demand calibration, because the plane of incidence is not changed due to the novel sample holder structure. The results for various standard samples were compared with those from conventional RCSE to test the performance of this instrument. Also repeated measurements were performed to test the precision of the calibration coefficient in a plane of incidence fixed.

  • PDF

Absolute Radiometric Calibration for KOMPSAT-3 AEISS and Cross Calibration Using Landsat-8 OLI

  • Ahn, Hoyong;Shin, Dongyoon;Lee, Sungu;Choi, Chuluong
    • 한국측량학회지
    • /
    • 제35권4호
    • /
    • pp.291-302
    • /
    • 2017
  • Radiometric calibration is a prerequisite to quantitative remote sensing, and its accuracy has a direct impact on the reliability and accuracy of the quantitative application of remotely sensed data. This paper presents absolute radiometric calibration of the KOMPSAT-3 (KOrea Multi Purpose SATellite-3) and cross calibration using the Landsat-8 OLI (Operational Land Imager). Absolute radiometric calibration was performed using a reflectance-based method. Correlations between TOA (Top Of Atmosphere) radiances and the spectral band responses of the KOMPSAT-3 sensors in Goheung, South Korea, were significant for multispectral bands. A cross calibration method based on the Landsat-8 OLI was also used to assess the two sensors using near simultaneous image pairs over the Libya-4 PICS (Pseudo Invariant Calibration Sites). The spectral profile of the target was obtained from EO-1 (Earth Observing-1) Hyperion data over the Libya-4 PICS to derive the SBAF (Spectral Band Adjustment Factor). The results revealed that the TOA radiance of the KOMPSAT-3 agree with Landsat-8 within 5.14% for all bands after applying the SBAF. The radiometric coefficient presented here appears to be a good standard for maintaining the optical quality of the KOMPSAT-3.

저 Reynolds 수 영역에서 Reynolds 수가 5공 프로우브의 보정에 미치는 영향 (The Effect of Reynolds Number on the Calibration of a Five-Hole Probe at Low Reynolds Numbers)

  • 이상우;전상배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.193-199
    • /
    • 2000
  • The effects of Reynolds number on the non-nulling calibration of a cone-type five-hole probe in low-speed flows have been investigated at the Reynolds numbers of $2.04{\times}10^3,\;4.09{\times}10^3$, and $6.13{\times}10^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. The result shows that each calibration coefficient, in general, is a function of the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting for the full non-nulling calibration characteristics. Due to the interference of the probe stem, the calibration coefficients have more Reynolds number sensitivity at positive pitch angles than at negative ones.

  • PDF

해저고정 소나표적의 위치교정기법과 오차해석 (A Calibration Technique and its Error Analysis for the Position of Seabed Sonar Target)

  • 이상국;이용곤
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.15-21
    • /
    • 2003
  • This paper contains a precise calibration technique for the position of seabed acoustic target and theoretical error analysis of calibration results. The target is deployed on seabed as a standalone transponder. The purpose of target is performing accuracy test for active sonar as well as position calibration itself. For the position calibration, relative range between target and test vessel should be measured using target's transponder function. The relative range data combined with vessel position can be converted into a estimated position of target by the application of nonlinear LSE method. The error analysis of position calibration was divided into two stages. One is for relative range estimator and the other for target position estimator. Numerical simulations for position calibration showed good matching between results and developed CRLB.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법 (A Study on the SDINS's Gyro Bias Calibration Method in Disturbances)

  • 이윤선;이상정
    • 한국군사과학기술학회지
    • /
    • 제12권3호
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

Calibration for Color Measurement of Lean Tissue and Fat of the Beef

  • Lee, S.H.;Hwang, H.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2003
  • In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

  • PDF

로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정 (Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming)

  • 정준효;국금환
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Novel Calibration Method for the Multi-Camera Measurement System

  • Wang, Xinlei
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.746-752
    • /
    • 2014
  • In a multi-camera measurement system, the determination of the external parameters is one of the vital tasks, referred to as the calibration of the system. In this paper, a new geometrical calibration method, which is based on the theory of the vanishing line, is proposed. Using a planar target with three equally spaced parallel lines, the normal vector of the target plane can be confirmed easily in every camera coordinate system of the measurement system. By moving the target into more than two different positions, the rotation matrix can be determined from related theory, i.e., the expression of the same vector in different coordinate systems. Moreover, the translation matrix can be derived from the known distance between the adjacent parallel lines. In this paper, the main factors effecting the calibration are analyzed. Simulations show that the proposed method achieves robustness and accuracy. Experimental results show that the calibration can reach 1.25 mm with the range about 0.5m. Furthermore, this calibration method also can be used for auto-calibration of the multi-camera mefasurement system as the feature of parallels exists widely.