• Title/Summary/Keyword: a biped walking robot

Search Result 195, Processing Time 0.02 seconds

A DSP-based Controller for a Small Humanoid Robot (DSP를 사용한 소형 인간형 로봇의 제어기)

  • Cho Jeong-San;Sung Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.191-197
    • /
    • 2005
  • Biped walking is the main feature of a humanoid robot. In a biped walking robot, there are many actuators to be controlled and many sensors to be interfaced. In this paper, we propose a DSP-based controller for a miniature biped walking robot with 21 RC servo motors. The proposed controller has a hierarchical structure; a host PC, a DSP-based main controller, and an auxiliary controller with an FPGA chip. The host PC generates and transmits the robot walking data for given walking parameters such as stride, walking period, etc. The main controller implemented with a TMS320LF2407A controls 21 RC servo motors via the auxiliary controller. We also perform some experiments for balancing motion and walking on a slope terrain with interfacing a 2-axis acceleration sensor and a TMS320LF2407A.

  • PDF

Walking motion capture system for the biped-walking robot (이족 보행로봇의 걸음새구현을 위한 모셔냅쳐 시스템)

  • 최형식;김영식;전대원;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.114-117
    • /
    • 2000
  • We developed a motion capture system to get angle data of human joints in walking mode. The data are used to coordinate the biped-walking robot developed in our laboratory. A pair of motion capture system is composed of three links with the ankle, knee, and pelvis joints. The system has six axes attached with potentiometers. We used an A/D converter was used to get digital data from joint angles. We filterd the data using the Butterworth 4th order digital filter, and simulated walking motion based on the data using the Matlab.

  • PDF

Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot (이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Jeon, Chang-Hoon;Kang, Jin-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

Intelligent Walking of Humanoid Robot for Stable Walking on a Decent (휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구)

  • Kim, Dong-Won;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF

Sensor System Study for Intelligence Biped Walking Robot (지능형 이족보행로봇을 위한 센서시스템 연구)

  • Kim You Shin;Hwang Gyu Deuk;Choi Hyoung Sik;Lee Chang Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.67-76
    • /
    • 2005
  • In this paper, An analysis on the intelligence system for a biped walking robot(BWR) was made and its results were applied to the BWR. Various sensors were applied to the developed BWR for autonomous and intelligent walk in unknown environments. To measure the distance between the object and BWR, ultrasonic sensor and infrared-rays sensor were used. To identity surrounding environments, vision system was used. Gyro sensor was used to control the posture of BWR. Also, piezoelectricity sensor was used to identity the pressure of foot landing on the surface. Sensors applied to the robot have measurement errors according to noises or walking environments. To improve the function of these sensors, influences of noise or sensing errors were minimized using a sensor fusion scheme. A gait test using the sensor fusion system was performed, and its results are presented.

Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm (유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성)

  • Kwon Ohung;Kang Minsung;Park Jong Hyeon;Choi Moosung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Development of a Simulator for the biped-walking robot using the open inventor (Open Inventor를 이용한 이족보행로봇의 시뮬레이터의 개발)

  • 최형식;김영식;전대원;우정재;김명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.296-299
    • /
    • 2001
  • We developed a motion capture system to get angle data of human joints in the walking mode. The motion capture system is a pair of leg-shape device, which is composed of three links with ankle, knee and pelvis joints. The sensors for measurement of the joint angle are potentiometers. We used an A/D converter to get digital data from joint angles, and which are used to simulate and coordinate the biped-walking robot developed in our laboratory. To simulate and analyze walking motion, animation based on three-dimension motion is performed using the open inventor software.

  • PDF

Performing Missions of a Small Biped Walking Robot using Image Processing (영상 처리를 이용한 소형 이족 보행 로봇의 임무 수행)

  • Kim, Nam-Hun;Ha, Jong-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1225-1230
    • /
    • 2016
  • This paper deals with performing missions of a small biped robot using image processing. Localization is required for stable walking under a given map. Localization of the robot is done by extracting boundary on a driving course. Estimation of three parameters including location and orientation is required when walking on a plane. In this paper, two parameters including the location of the robot along the vertical direction of robot's walking direction and an orientation is estimated for localization. Color is used for the detection of obstacles and normalized values are used for the stable detection.

Development of Biped Walking Robot Capable of Supporting Heavy Weight (고중량 지지 가능한 이족보행로봇의 개발)

  • Choi H.S.;Lee S.J.;Oh J.H.;Kang Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.63-64
    • /
    • 2006
  • In this paper, design modification was performed to improve the structure of ex-developed 12 D.O.F Biped walking robot, KUBIR-1 similar with human beings. The motion of KUBIR-1 was slow and had a limited walking space. Hence I designed an improved BWR named KUBIR-2 with 12 degree of freedom. KUBIR-2 was designed to solve the following problems of KUBIR-1. First, KUBIR-2 was more simply designed in the four-bar-link mechanism, and its weight was reduced. Second, it had the built-in controller and motor driver. Third, walking velocity of KUBIR-2 was increased by improvement of speed and motion joint angle range. In addition to these, we modified the structure of the foot for more stable walking.

  • PDF