• Title/Summary/Keyword: a autopilot

Search Result 188, Processing Time 0.02 seconds

Autopilot Design and Flight Test of an Unmanned Airship for Aviation Photograph (항공촬영용 비행선의 자동비행장치 개발 및 비행시험)

  • 홍천한;김병수;박주원;제정형;이성근
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.45-54
    • /
    • 2006
  • General unmaned airship, in use of aviation photography, needs both airship -controller and camera-controller who work together in harmony. In oder to reduce this manpower and get the good Geographical Information Systems(GIS) data, it is necessary to use a autopilot controller which guides a exact path lines. This paper presents the autopilot control law base on classical PID control. Moreover, this paper shows the result of flight test, the procedure of gain tuning and LOS guidance algorism that is reduce a tracking error.

Missile Autopilot Design for Agile Turn Control During Boost-Phase

  • Ryu, Sun-Mee;Won, Dae-Yeon;Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.365-370
    • /
    • 2011
  • This paper presents the air-to-air missile autopilot design for a $180^{\circ}$ heading reversal maneuver during boost-phase. The missile's dynamics are linearized at a set of operating points for which angle of attack controllers are designed to cover an extended flight envelope. Then, angle of attack controllers are designed for this set of points, utilizing a pole-placement approach. The controllers' gains in the proposed configuration are computed from aerodynamic coefficients and design parameters in order to satisfy designer-chosen criteria. These design parameters are the closed-loop frequency, damping ratio, and time constant; these represent the characteristics of the control system. To cope with highly nonlinear and rapidly time varying dynamics during boost-phase, the global gain-scheduled controller is obtained by interpolating the controllers' gains over variations of the angle of attack, Mach number, and center of gravity. Simulation results show that the proposed autopilot design provides satisfactory performance and possesses good [ed: or "sufficient" or "excellent"] capabilities.

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Autopilot design for BTT flight vehicles (이동중인 비행시스템의 자동조종장치 설계)

  • 백운보;허남수;이만형;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.87-92
    • /
    • 1989
  • An autopilot for the class of Bank-To-Turn missiles is developed using a multivariable plant model & control design methodology. The roll-pitch-yaw cross coupling is included in the design considerations. Feedback system is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR). Nonlinear simulations are presented to demonstrate the performances of the designed system.

  • PDF

Design of a PID-type Autopilot Concerned with Propulsive Energy of Ship (선박의 추진에너지를 고려한 PID형 자동조타기 설계)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • The PID controller type autopilot is applied to support shipmaneuvering for course-keeping and heading control. A control constants of autopilot system should be evaluated by promoting energy loss (fuel consumption) from the view point of economic efficiency of the ship. This paper is obtained control constants of autopilot system from the RCGA pursued the minimum energy loss. In addition, the controller which is designed involves a constrained optimization problem. The performance of the proposed method is demonstrated through a set of simulation.

A Study on Improvement of Roll Autopilot System (가로축 자동비행시스템 개선에 관한 연구)

  • Kim, Chong-Sup;Koh, Gi-Oak;Ji, Chang-Ho;Cho, In-Je;Lee, Dong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.706-711
    • /
    • 2015
  • The fighter aircraft uses several different loading configurations for air-to-surface and air-to-air combat missions. To maintain wings-level flight with an asymmetric weapon configuration, a pilot controls a roll trim system. However, it is difficult to apply an accurate roll trim input for wings-level flight in the actual flight under disturbance. The inaccurate roll trim input degrades the performance of the roll autopilot system. In this paper, to solve this problem, an integrator was additionally designed in the command part of the roll autopilot system. The initial transient response was improved by scheduling the limiter to restrict the roll attitude error. As a result of the evaluation of the simulation for the designed flight control law, the roll attitude following performance was found to be improved in the autopilot system operation under the inaccurate roll trim condition.

A Robust Recursive Control Approach to Nonlinear Missile Autopilot (강인 반복 제어를 이용한 비선영 유도탄 자동조종장치)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1031-1035
    • /
    • 2001
  • In this paper, a robust recursive control approach for nonlinear system, which is based on Lyapunov stability, is proposed. The proposed method can apply to extended systems including cascaded systems and the stability is guaranteed in the sense of Lyapunov. The recursive design procedure so called “robust recursive control approach” is used to find a stabilizing robust controller and simultaneously estimate the uncertainty parameters. First, a nonlinear model with uncertainties whose bounds are unknown is derived. Then, unknown bounds of uncertainties are estimated. By using these estimates, the stabilizing robust controller is updated at each step. This approach is applied to the pitch autopilot design of a nonlinear missile system and simulation results indicate good performance.

  • PDF

Analysis and Improvement of Time Sampling effects on Singular Perturbation based Control Systems - Its Aplication to Design of Singular Pertubation based STT Missible Digital Autopilot (특이섭동 기법 기반 제어 시스템에 대한 샘플링 영향 분석 및 개선 - 특이섭동 기법 기반 STT 미사일 디지털 자동조정장치 설계에의 적용)

  • Jeong, Seon-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.33-43
    • /
    • 2000
  • The guarantee of the fast dynamics stability is essential for successful application of singular Perturbation technique to control systems design. Even though the fast dynamics of the control systems is rendered stable by an analog controller, the fast dynamics stability of the control systems resulted from an digital implementation of the analog controller can be impaired severely. In this paper, we first investigate the time sampling effects on singular perturbation based control systems by centering on a design example of recently developed singular perturbation based STT missile autopilot with high performance. The investigation shows that the stability margin the fast dynamics of the STT misile autopilot system decreases rapidly as the sampling interval of discretizing the analog autopilot increases. Under this analysis, we propose a composite digital controller with compensation for the decreasing stability margin of the fast dynamics due to time sampling to achieve better performance with respect to sampling time. The improved performance of the proposed composite digital controller is verified by simulation. This result shows that one needs to investigate time sampling effects in the digital implementation of singular perturbation based controllder, and then can have benefit from the investigation.

  • PDF

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

A Study on the Prediction Method of Propulsive Energy Loss Related to Automatic Steering of Ships (자동조타로써 항행하는 선박의 추진 에너지 손실량 평가법에 관한 연구)

  • 손경호;이경우;황승욱;배정철
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.3
    • /
    • pp.11-19
    • /
    • 1995
  • When an automatic course keeping is introduced, as is quite popular in modern navigation, the closed-loop control system consists of autopilot device, power unit, steering gear, ship dynamics, and magnetic or gyrocompass. We derive mathematical models of each element of the automatic steering system. We provide a method of theoretical analysis on the propulsive energy loss related to automatic steering of ships in the open seas, taking account of the on-off(non-linear) characteristics of power unit. Also we paid attention to non-linear element installed in autopilot device, which is normally called weather adjuster. Next we make numerical calculation of the effects of autopilot control constants on the propulsive energy loss for two kinds of ship, a fishing boat and an ore carrier. Realistic sea and wind disturbances are employed in the calculation.

  • PDF