• Title/Summary/Keyword: a attached mass

Search Result 360, Processing Time 0.023 seconds

Stability Analysis of Pipe Conveying Fluid with Crack and Attached Masses (크랙과 부가질량들을 가진 유체유동 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.121-131
    • /
    • 2008
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity. As attached masses are increased, the region of re-stabilization of the system is decreased but the region of divergence is increased.

Use of equivalent spring method for free vibration analyses of a rectangular plate carrying multiple three-degree-of-freedom spring-mass systems

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.713-735
    • /
    • 2005
  • Due to the complexity of mathematical expressions, the literature concerning the free vibration analysis of plates carrying multiple three-degree-of-freedom (dof) spring-mass systems is rare. In this paper, the three degrees of freedom (dof's) for a spring-mass system refer to the translational motion of its lumped mass in the vertical ($\bar{z}$) direction and the two pitching motions of its lumped mass about the two horizontal ($\bar{x}$ and $\bar{y}$) axes. The basic concept of this paper is to replace each three-dof spring-mass system by a set of equivalent springs, so that the free vibration characteristics of a rectangular plate carrying any number of three-dof spring-mass systems can be obtained from those of the same plate supported by the same number of sets of equivalent springs. Since the three dof's of the lumped mass for each three-dof spring-mass system are eliminated to yield a set of equivalent springs, the total dof of the entire vibrating system is not affected by the total number of the spring-mass systems attached to the rectangular plate. However, this is not true in the conventional finite element method (FEM), where the total dof of the entire vibrating system increases three if one more three-dof spring-mass system is attached to the rectangular plate. Hence, the computer storage memory required by using the presented equivalent spring method (ESM) is less than that required by the conventional FEM, and the more the total number of the three-dof spring-mass systems attached to the plate, the more the advantage of the ESM. In addition, since manufacturing a spring with the specified stiffness is much easier than making a three-dof spring-mass system with the specified spring constants and mass magnitude, the presented theory of replacing a three-dof spring-mass system by a set of equivalent springs will be also significant from this viewpoint.

Experimental Verification on Dynamic Stability of a Pipe with Attached Masses Conveying Fluid (부가질량을 갖고 유동유체에 의한 송수관의 동적 안정성에 관한 실험적 검증)

  • 김삼일;류봉조;정승호;류두현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.127-131
    • /
    • 2000
  • The paper presents both theoretical and experimental study for dynamic instabilities of a vertical cantilevered pipe with two attached lumped masses conveying fluid. The two attached lumped masses can be considered as valves or some mechanical parts in real pipe system. Eigenvalue behaviors depending on the flow velocity are investigated for the change of positions and magnitudes of an attached lumped mass and a tip mass. In order to verify appropriaty of numerical solutions, experiments were accomplished. Theoretical predictions have a good agreement with experimental ones.

  • PDF

Experimental Verification on Dynamic Stability of a Vertical Cantilevered Pipe with Attached Masses Conveying Fluid (복수 부가질량을 갖고 유동유체에 의한 수직외팔 파이프의 동적안정성에 관한 실험적 검증)

  • 김삼일;정승호;류봉조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.208-215
    • /
    • 2001
  • The paper presents both theoretical and experimental study fur dynamic instabilities of a vortical cantilevered pipe with two attached lumped masses conveying fluid. The two attached lumped masses can be considered as valves or some mechanical paras in real pipe systems. Eigenvalue behaviors depending on the flow velocity are investigated for the change of Positions and magnitudes of an attached lumped mass and a tip mass. In order to verify appropriate of numerical solutions, experiments were accomplished. Theoretical predictions have a good agreement with experimental ones.

  • PDF

Evaluation of high performance isolation spring mount by attached masses (부가질량 효과에 따른 고효율 방진마운트의 진동저감 성능평가)

  • Ho, Kyoung-Chan;Lee, Byoung-Chul;Lee, Yong-Hyun;Lee, Young-Je;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1247-1252
    • /
    • 2007
  • The machine equipment of the building inside occurs the vibration. In order to reduce this vibration spring, rubber pad is used. But efficiency of this classical mount is restricted at specific frequency. Also maximum efficiency design is complicated. This paper proposes and examines a attached mass isolation system that is used to reduce transmitted vibrations from machines onto their floor support. With attached mass the low frequency performance is improved overall. The performance is showed in 2 degree of freedom model test. And the proposed isolator has been validated by dynamic test and good agreement between theoretical and experimental results has been obtained.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

On the control of vibratory MEMS gyroscopes

  • Choura, S.;Aouni, N.;El-Borgi, S.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.793-810
    • /
    • 2010
  • This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation results are presented to prove the efficiency of the proposed control design.

VIBRATION OF A CIRCULAR PLATE WITH A CONCENTRATED MASS ATTACHED ON A RADIUS

  • Lee, Jang-Moo;Hong, Jin-Sun
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An analytical method is presented for predicting the effect of a local deviation in the form of a concentrated mass along a radial line on the free bending vibration characteristics of a nearly axisymmetric circular plate. The approach is based on the Rayleigh-Ritz method and the expression of local deviation of the concentrated radial mass as the variation of heaviside unit step function. The effects of the concentrated mass on the natural frequencies and mode shapes of the plate are predicted with a proposed nondimensional mass parameter.

A Simple Method of Vibration Analysis of Laminated Composite Plates Under Axial Loadings and with Attached Point Masses (축하중과 첨가질량이 작용하는 적층복합판의 진동해석)

  • Lee, Bong-hak;Kim, Kyeong-jin;Won, Chi-moon;Sung, Ki-tae
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.169-174
    • /
    • 1995
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. IN this paper, the result of application of this method to the laminated plates with axial forces and with attached point mass/masses is presented. Both $N_x$ and $N_y$ forces are considered. The solution for the laminated plates with arbitrary boundary conditions and irregular section can be obtained by simply obtaining the deflection influence coefficients by any method. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is thoroughly studied. The influence of $N_x$ and $N_y$ is also carefully investigated.

  • PDF